Bioinformatics Toolbox™
User's Guide

<4

MATLAB

R2019%a -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Bioinformatics Toolbox™ User's Guide
© COPYRIGHT 2003-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2003
June 2004
November 2004
March 2005
May 2005
September 2005
November 2005
March 2006
May 2006
September 2006
March 2007
April 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 13SP1+)
Revised for Version 1.1 (Release 14)
Revised for Version 2.0 (Release 14SP1+)
Revised for Version 2.0.1 (Release 14SP2)
Revised for Version 2.1 (Release 14SP2+)
Revised for Version 2.1.1 (Release 14SP3)
Revised for Version 2.2 (Release 14SP3+)
Revised for Version 2.2.1 (Release 2006a)
Revised for Version 2.3 (Release 2006a+)
Revised for Version 2.4 (Release 2006Db)
Revised for Version 2.5 (Release 2007a)
Revised for Version 2.6 (Release 2007a+)
Revised for Version 3.0 (Release 2007b)
Revised for Version 3.1 (Release 2008a)
Revised for Version 3.2 (Release 2008b)
Revised for Version 3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.5 (Release 2010a)
Revised for Version 3.6 (Release 2010b)
Revised for Version 3.7 (Release 2011a)
Revised for Version 4.0 (Release 2011b)
Revised for Version 4.1 (Release 2012a)
Revised for Version 4.2 (Release 2012b)
Revised for Version 4.3 (Release 2013a)
Revised for Version 4.3.1 (Release 2013b)
Revised for Version 4.4 (Release 2014a)
Revised for Version 4.5 (Release 2014b)
Revised for Version 4.5.1 (Release 2015a)
Revised for Version 4.5.2 (Release 2015b)
Revised for Version 4.6 (Release 2016a)
Updated for Version 4.7 (Release 2016b)
Updated for Version 4.8 (Release 2017a)
Updated for Version 4.9 (Release 2017b)
Updated for Version 4.10 (Release 2018a)
Updated for Version 4.11 (Release 2018b)
Updated for Version 4.12 (Release 2019a)

P

Contents

Getting Started

1]

Bioinformatics Toolbox Product Description 1-2
Key Features 1-2
Product Overview i 1-3
Features i 1-3
Expected Userst 1-4
Installation 1-5
Installing i 1-5
Required Software 1-5
Optional Software 1-5
Data Formats and Databases 1-8
Sequence Alignments 1-10
Sequence Utilities and Statistics 1-11
Protein Property Analysis 1-13
Phylogenetic Analysis 1-14
Microarray Data Analysis Tools 1-15
Microarray Data Storage 1-17
Mass Spectrometry Data Analysis 1-18
Graph Theory Functions 1-21
Graph Visualization 1-23

Statistical Learning and Visualization 1-24

Prototyping and Development Environment 1-25
Data Visualization 1-26
Algorithm Sharing and Application Deployment 1-27
Exchange Bioinformatics Data Between Excel and MATLAB
.. 1-28
Using Excel and MATLAB Together 1-28
Aboutthe Example 1-28
Before Running the Example 1-28
Running the Example for the Entire Data Set 1-29
Editing Formulas to Run the Example on a Subset of the Data
.. 1-31
Using the Spreadsheet Link product to Interact With the Data in
MATLAB ... 1-33
Get Information from Web Database 1-36
What Are get Functions? 1-36
Creating the getpubmed Function 1-37

High-Throughput Sequence Analysis

2|

Work with Next-Generation Sequencing Data 2-2
OVETVIEW . . ottt e et e e e e e 2-2
What Files Can You Access?coviiiiinnennnnnn.. 2-2
BeforeYouBegin 2-3
Create a BioIndexedFile Object to Access Your Source File ... 2-4
Determine the Number of Entries Indexed By a BioIndexedFile

Object 2-4
Retrieve Entries from Your Source File 2-5
Read Entries from Your Source File 2-5

Manage Sequence Read Data in Objects

2-8
OVeIVIEW 2-8
Represent Sequence and Quality Data in a BioRead Object ... 2-9

vi Contents

Represent Sequence, Quality, and Alignment/Mapping Data in a

BioMap Object 2-10
Retrieve Information from a BioRead or BioMap Object 2-14
Set Information in a BioRead or BioMap Object 2-16
Determine Coverage of a Reference Sequence 2-17
Construct Sequence Alignments to a Reference Sequence . . 2-18
Filter Read Sequences Using SAM Flags 2-19
Store and Manage Feature Annotations in Objects 2-21
Represent Feature Annotations in a GFFAnnotation or
GTFAnnotation Object 2-21
Construct an Annotation Object 2-21
Retrieve General Information from an Annotation Object . . . 2-22
Access Data in an Annotation Object 2-23
Use Feature Annotations with Sequence Read Data 2-24
Visualize and Investigate Sequence Read Alignments 2-28
When to Use the NGS Browser to Visualize and Investigate Data
.. 2-28
Openthe NGSBrowserc.iiiiienenn.. 2-29
Import Data into the NGSBrowser 2-30
Zoom and Pan to a Specific Region of the Alignment 2-32
View Coverage of the Reference Sequence 2-33
View the Pileup View of ShortReads 2-33
Compare Alignments of Multiple Data Sets 2-34
View Location, Quality Scores, and Mapping Information . . . 2-35
FlagReads i 2-36
Evaluate and Flag Mismatches 2-37
View Insertions and Deletions 2-38
View Feature Annotations 2-38
Print and Export the Browser Image 2-39
Count Features from NGSReads 2-40

Sequence Analysis

3|

Exploring a Nucleotide Sequence Using Command Line 3-2
Overview of Example 3-2
Searching the Web for Sequence Information 3-2

viii

Contents

Reading Sequence Information fromthe Web
Determining Nucleotide Composition
Determining Codon Composition
Open Reading Frames ov..
Amino Acid Conversion and Composition

Exploring a Nucleotide Sequence Using the Sequence Viewer
ADD . .
Overview of the Sequence Viewer
Importing a Sequence into the Sequence Viewer
Viewing Nucleotide Sequence Information
Searching forWordsc......
Exploring Open Reading Frames
Closing the Sequence Viewer

Explore a Protein Sequence Using the Sequence Viewer App
Overview of the Sequence Viewer
Viewing Amino Acid Sequence Statistics
Closing the Sequence Viewer
References i

Compare Sequences Using Sequence Alignment Algorithms
Overview of Example
Find a Model Organismto Study
Retrieve Sequence Information from a Public Database
Search a Public Database for Related Genes
Locate Protein Coding Sequences
Compare Amino Acid Sequences

View and Align Multiple Sequences
Overview of the Sequence AlignmentApp
Visualize Multiple Sequence Alignment
Adjust Sequence Alignments Manually
Rearrange Rows i
Generate Phylogenetic Tree from Aligned Sequences

Microarray Analysis

4

Managing Gene Expression Data in Objects 4-2

Representing Expression Data Values in DataMatrix Objects

... 4-5
Overview of DataMatrix Objects 4-5
Constructing DataMatrix Objects 4-6
Getting and Setting Properties of a DataMatrix Object 4-6
Accessing Data in DataMatrix Objects 4-7

Representing Expression Data Values in ExptData Objects .. 4-11
Overview of ExptData Objects 4-11
Constructing ExptData Objects 4-12
Using Properties of an ExptData Object 4-12
Using Methods of an ExptData Object 4-13
References 4-14

Representing Sample and Feature Metadata in MetaData

Objects 4-15
Overview of MetaData Objects 4-15
Constructing MetaData Objects 4-16
Using Properties of a MetaData Object 4-19
Using Methods of a MetaData Object 4-19

Representing Experiment Information in a MIAME Object .. 4-21
Overview of MIAME Objects 4-21
Constructing MIAME Objects 4-21
Using Properties of a MIAME Object 4-23
Using Methods of a MIAME Object 4-24

Representing All Data in an ExpressionSet Object 4-25
Overview of ExpressionSet Objects 4-25
Constructing ExpressionSet Objects 4-27
Using Properties of an ExpressionSet Object 4-28
Using Methods of an ExpressionSet Object 4-28

Visualizing MicroarrayImages 4-30
Overview of the Mouse Example 4-30
Exploring the Microarray Data Set 4-31
Spatial Images of MicroarrayData 4-33

ix

Statistics of the Microarrays 4-41
Scatter Plots of Microarray Data 4-43

S|

Using the Phylogenetic Tree App 5-2
Overview of the Phylogenetic Tree App 5-2
Opening the Phylogenetic Tree App 5-2
File MeNU 5-3
ToolsMenu i 5-15
Window Menu 5-24
HelpMenu i 5-24

X Contents

Getting Started

» “Bioinformatics Toolbox Product Description” on page 1-2

* “Product Overview” on page 1-3

* “Installation” on page 1-5

* “Data Formats and Databases” on page 1-8

* “Sequence Alignments” on page 1-10

* “Sequence Utilities and Statistics” on page 1-11

* “Protein Property Analysis” on page 1-13

» “Phylogenetic Analysis” on page 1-14

* “Microarray Data Analysis Tools” on page 1-15

* “Microarray Data Storage” on page 1-17

* “Mass Spectrometry Data Analysis” on page 1-18

* “Graph Theory Functions” on page 1-21

* “Graph Visualization” on page 1-23

» “Statistical Learning and Visualization” on page 1-24

* “Prototyping and Development Environment” on page 1-25

* “Data Visualization” on page 1-26

» “Algorithm Sharing and Application Deployment” on page 1-27
* “Exchange Bioinformatics Data Between Excel and MATLAB” on page 1-28
* “Get Information from Web Database” on page 1-36

1 Getting Started

Bioinformatics Toolbox Product Description

1-2

Read, analyze, and visualize genomic and proteomic data

Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing
(NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox
functions, you can read genomic and proteomic data from standard file formats such as
SAM, FASTA, CEL, and CDE as well as from online databases such as the NCBI Gene
Expression Omnibus and GenBank®. You can explore and visualize this data with
sequence browsers, spatial heatmaps, and clustergrams. The toolbox also provides
statistical techniques for detecting peaks, imputing values for missing data, and selecting
features.

You can combine toolbox functions to support common bioinformatics workflows. You can
use ChIP-Seq data to identify transcription factors; analyze RNA-Seq data to identify
differentially expressed genes; identify copy number variants and SNPs in microarray
data; and classify protein profiles using mass spectrometry data.

Key Features

* Next Generation Sequencing analysis and browser

* Sequence analysis and visualization, including pairwise and multiple sequence
alignment and peak detection

* Microarray data analysis, including reading, filtering, normalizing, and visualization

* Mass spectrometry analysis, including preprocessing, classification, and marker
identification

* Phylogenetic tree analysis
* Graph theory functions, including interaction maps, hierarchy plots, and pathways

* Data import from genomic, proteomic, and gene expression files, including SAM,
FASTA, CEL, and CDEF, and from databases such as NCBI and GenBank

Product Overview

Product Overview

Features

The Bioinformatics Toolbox product extends the MATLAB® environment to provide an
integrated software environment for genome and proteome analysis. Scientists and
engineers can answer questions, solve problems, prototype new algorithms, and build
applications for drug discovery and design, genetic engineering, and biological research.
An introduction to these features will help you to develop a conceptual model for working
with the toolbox and your biological data.

The Bioinformatics Toolbox product includes many functions to help you with genome and
proteome analysis. Most functions are implemented in the MATLAB programming
language, with the source available for you to view. This open environment lets you
explore and customize the existing toolbox algorithms or develop your own.

You can use the basic bioinformatic functions provided with this toolbox to create more
complex algorithms and applications. These robust and well-tested functions are the
functions that you would otherwise have to create yourself.

Toolbox features and functions fall within these categories:
* Data formats and databases — Connect to Web-accessible databases containing

genomic and proteomic data. Read and convert between multiple data formats.

* High-throughput sequencing — Gene expression and transcription factor analysis
of next-generation sequencing data, including RNA-Seq and ChIP-Seq.

* Sequence analysis — Determine the statistical characteristics of a sequence, align
two sequences, and multiply align several sequences. Model patterns in biological
sequences using hidden Markov model (HMM) profiles.

+ Phylogenetic analysis — Create and manipulate phylogenetic tree data.
* Microarray data analysis — Read, normalize, and visualize microarray data.

* Mass spectrometry data analysis — Analyze and enhance raw mass spectrometry
data.

* Statistical learning — Classify and identify features in data sets with statistical
learning tools.

* Programming interface — Use other bioinformatic software (BioPerl and BioJava)
within the MATLAB environment.

1-3

1 Getting Started

1-4

The field of bioinformatics is rapidly growing and will become increasingly important as
biology becomes a more analytical science. The toolbox provides an open environment
that you can customize for development and deployment of the analytical tools you will
need.

* Prototype and develop algorithms — Prototype new ideas in an open and extensible
environment. Develop algorithms using efficient string processing and statistical
functions, view the source code for existing functions, and use the code as a template
for customizing, improving, or creating your own functions. See “Prototyping and
Development Environment” on page 1-25.

* Visualize data — Visualize sequences and alignments, gene expression data,
phylogenetic trees, mass spectrometry data, protein structure, and relationships
between data with interconnected graphs. See “Data Visualization” on page 1-26.

* Share and deploy applications — Use an interactive GUI builder to develop a
custom graphical front end for your data analysis programs. Create standalone
applications that run separately from the MATLAB environment. See “Algorithm
Sharing and Application Deployment” on page 1-27.

Expected Users

The Bioinformatics Toolbox product is intended for computational biologists and research
scientists who need to develop new algorithms or implement published ones, visualize
results, and create standalone applications.

* Industry/Professional — Increasingly, drug discovery methods are being supported
by engineering practice. This toolbox supports tool builders who want to create
applications for the biotechnology and pharmaceutical industries.

* Education/Professor/Student — This toolbox is well suited for learning and teaching
genome and proteome analysis techniques. Educators and students can concentrate
on bioinformatic algorithms instead of programming basic functions such as reading
and writing to files.

While the toolbox includes many bioinformatic functions, it is not intended to be a
complete set of tools for scientists to analyze their biological data. However, the MATLAB
environment is ideal for rapidly designing and prototyping the tools you need.

Installation

Installation

Installing

Install the Bioinformatics Toolbox software from a DVD or Web release using the
MathWorks® Installer.

Required Software

The Bioinformatics Toolbox software requires the following MathWorks products to be
installed on your computer.

Required Software Description

MATLAB Provides a command-line interface and integrated software
environment for the Bioinformatics Toolbox software.

Bioinformatics Toolbox software requires the current

version ofMATLAB.
Statistics and Machine Provides basic statistics and probability functions used by
Learning Toolbox™ the Bioinformatics Toolbox software.

Bioinformatics Toolbox software requires the current
version ofStatistics and Machine Learning Toolbox.

Optional Software

MATLAB and the Bioinformatics Toolbox software environment is open and extensible. In
this environment you can interactively explore ideas, prototype new algorithms, and
develop complete solutions to problems in bioinformatics. MATLAB facilitates
computation, visualization, prototyping, and deployment.

Using the Bioinformatics Toolbox software with other MATLAB toolboxes and products
will allow you to do advanced algorithm development and solve multidisciplinary
problems.

1-5

1 Getting Started

1-6

Optional Software

Description

Parallel Computing
Toolbox™

Perform parallel bioinformatic computations on multicore
computers and computer clusters. For an example of batch
processing through parallel computing, see the Batch
Processing of Spectra Using Distributed Computing.

Signal Processing
Toolbox™

Process signal data from bioanalytical instrumentation.
Examples include acquisition of fluorescence data for DNA
sequence analyzers, fluorescence data for microarray
scanners, and mass spectrometric data from protein
analyses.

Image Processing
Toolbox™

Create complex and custom image processing algorithms
for data from microarray scanners.

SimBiology®

Model, simulate, and analyze biochemical systems.

Optimization Toolbox™

Use nonlinear optimization to predict the secondary
structure of proteins and the structure of other biological
macromolecules.

Deep Learning Toolbox™

Use neural networks to solve problems where algorithms
are not available. For example, you can train neural
networks for pattern recognition using large sets of
sequence data.

Database Toolbox™

Create your own in-house databases for sequence data with
custom annotations.

MATLAB Compiler™

Create standalone applications from MATLAB GUI
applications, and create dynamic link libraries from
MATLAB functions to use with any programming
environment.

MATLAB Compiler SDK™

Create COM objects to use with any COM-based
programming environment.

MATLAB Compiler SDK

Integrate MATLAB applications into your organization's
Java® programs by creating a Java wrapper around the
application.

MATLAB Compiler

Create Microsoft® Excel® add-in functions from MATLAB
functions to use with Excel spreadsheets.

Installation

Optional Software

Description

Spreadsheet Link™

Connect Microsoft Excel with the MATLAB Workspace to
exchange data and to use MATLAB computational and
visualization functions. For more information, see
“Exchange Bioinformatics Data Between Excel and
MATLAB” on page 1-28.

1-7

1 Getting Started

Data Formats and Databases

1-8

The Bioinformatics Toolbox lets you access many of the databases on the web and other
online data repositories. It lets you copy data into the MATLAB workspace, and read and
write to files with standard bioinformatic formats. It also reads many common genome file
formats so that you do not have to write and maintain your own file readers.

Web-based databases — You can directly access public databases on the Web and copy
sequence and gene expression information into the MATLAB environment.

The sequence databases currently supported are GenBank (getgenbank), GenPept
(getgenpept), European Molecular Biology Laboratory (EMBL) (getembl), and Protein
Data Bank (PDB) (getpdb). You can also access data from the NCBI Gene Expression
Omnibus (GEO) Web site by using a single function (getgeodata).

Get multiply aligned sequences (gethmmalignment), hidden Markov model profiles
(gethmmprof), and phylogenetic tree data (gethmmtree) from the PFAM database.

Gene Ontology database — Load the database from the Web into a gene ontology object
(geneont). Select sections of the ontology with methods for the geneont object
(geneont.getancestors, geneont.getdescendants, geneont.getmatrix,
geneont.getrelatives), and manipulate data with utility functions (goannotread,
num2goid).

Read data from instruments — Read data generated from gene sequencing
instruments (scfread, joinseq, traceplot), mass spectrometers (jcampread), and
Agilent® microarray scanners (agferead).

Reading data formats — The toolbox provides a number of functions for reading data
from common bioinformatic file formats.

* Sequence data: GenBank (genbankread), GenPept (genpeptread), EMBL
(emblread), PDB (pdbread), and FASTA (fastaread)

* Multiply aligned sequences: ClustalW and GCG formats (multialignread)

* Gene expression data from microarrays: Gene Expression Omnibus (GEO) data
(geosoftread), GenePix® data in GPR and GAL files (gprread, galread), SPOT data
(sptread), Affymetrix® GeneChip® data (affyread), and ImaGene® results files
(imageneread)

* Hidden Markov model profiles: PFAM-HMM file (pfamhmmread)

See Also

Writing data formats — The functions for getting data from the Web include the option
to save the data to a file. However, there is a function to write data to a file using the
FASTA format (fastawrite).

BLAST searches — Request Web-based BLAST searches (blastncbi), get the results
from a search (getblast) and read results from a previously saved BLAST formatted
report file (blastread).

The MATLAB environment has built-in support for other industry-standard file formats
including Microsoft Excel and comma-separated-value (CSV) files. Additional functions
perform ASCII and low-level binary 1/O, allowing you to develop custom functions for
working with any data format.

See Also

More About

. “High-Throughput Sequencing”

. “Microarray Analysis”

. “Sequence Analysis”

. “Structural Analysis”

. “Mass Spectrometry and Bioanalytics”

1-9

1 Getting Started

Sequence Alignments

1-10

You can select from a list of analysis methods to compare nucleotide or amino acid
sequences using pairwise or multiple sequence alignment functions.

Pairwise sequence alignment — Efficient implementations of standard algorithms such
as the Needleman-Wunsch (nwalign) and Smith-Waterman (swalign) algorithms for
pairwise sequence alignment. The toolbox also includes standard scoring matrices such
as the PAM and BLOSUM families of matrices (blosum, dayhoff, gonnet, nuc44, pam).
Visualize sequence similarities with seqdotplot and sequence alignment results with
showalignment.

Multiple sequence alignment — Functions for multiple sequence alignment
(multialign, profalign) and functions that support multiple sequences
(multialignread, fastaread, showalignment). There is also a graphical interface
(seqalignviewer) for viewing the results of a multiple sequence alignment and
manually making adjustment.

Multiple sequence profiles — Implementations for multiple alignment and profile
hidden Markov model algorithms (gethmmprof, gethmmalignment, gethmmtree,
pfamhmmread, hmmprofalign, hmmprofestimate, hmmprofgenerate,
hmmprofmerge, hmmprofstruct, showhmmprof).

Biological codes — Look up the letters or numeric equivalents for commonly used
biological codes (aminolookup, baselookup, geneticcode, revgeneticcode).

See Also

More About

. “Sequence Utilities and Statistics” on page 1-11
. “Sequence Analysis”

. “Data Formats and Databases” on page 1-8

Sequence Utilities and Statistics

Sequence Utilities and Statistics

You can manipulate and analyze your sequences to gain a deeper understanding of the
physical, chemical, and biological characteristics of your data. Use a graphical user
interface (GUI) with many of the sequence functions in the toolbox (seqviewer).

Sequence conversion and manipulation — The toolbox provides routines for common
operations, such as converting DNA or RNA sequences to amino acid sequences, that are
basic to working with nucleic acid and protein sequences (aa2int, aa2nt, dna2rna,
rna2dna, int2aa, int2nt, nt2aa, nt2int, seqcomplement, seqrcomplement,
seqreverse).

You can manipulate your sequence by performing an in silico digestion with restriction
endonucleases (restrict) and proteases (cleave).

Sequence statistics — Determine various statistics about a sequence (aacount,
basecount, codoncount, dimercount, nmercount, ntdensity, codonbias,
cpgisland, oligoprop), search for specific patterns within a sequence
(segshowwords, seqwordcount), or search for open reading frames (seqshoworfs). In
addition, you can create random sequences for test cases (randseq).

Sequence utilities — Determine a consensus sequence from a set of multiply aligned
amino acid, nucleotide sequences (seqconsensus, or a sequence profile (seqprofile).
Format a sequence for display (seqdisp) or graphically show a sequence alignment with
frequency data (seqlogo).

Additional MATLAB functions efficiently handle string operations with regular
expressions (regexp, seq2regexp) to look for specific patterns in a sequence and search
through a library for string matches (seqmatch).

Look for possible cleavage sites in a DNA/RNA sequence by searching for palindromes
(palindromes).

See Also

More About

. “Sequence Alignments” on page 1-10
. “Sequence Analysis”

1-11

1 Getting Started

. “Protein and Amino Acid Sequence Analysis”
. “Data Formats and Databases” on page 1-8

1-12

Protein Property Analysis

Protein Property Analysis

You can use a collection of protein analysis methods to extract information from your
data. You can determine protein characteristics and simulate enzyme cleavage reactions.
The toolbox provides functions to calculate various properties of a protein sequence, such
as the atomic composition (atomiccomp), molecular weight (nolweight), and isoelectric
point (isoelectric). You can cleave a protein with an enzyme (cleave, rebasecuts)
and create distance and Ramachandran plots for PDB data (pdbdistplot,
ramachandran). The toolbox contains a graphical user interface for protein analysis
(proteinplot) and plotting 3-D protein and other molecular structures with information
from molecule model files, such as PDB files (molviewer).

Amino acid sequence utilities — Calculate amino acid statistics for a sequence
(aacount) and get information about character codes (aminolookup).

See Also

More About

. “Protein and Amino Acid Sequence Analysis”
. “Structural Analysis”

1-13

1 Getting Started

Phylogenetic Analysis

1-14

Phylogenetic analysis is the process you use to determine the evolutionary relationships
between organisms. The results of an analysis can be drawn in a hierarchical diagram
called a cladogram or phylogram (phylogenetic tree). The branches in a tree are based on
the hypothesized evolutionary relationships (phylogeny) between organisms. Each
member in a branch, also known as a monophyletic group, is assumed to be descended
from a common ancestor. Originally, phylogenetic trees were created using morphology,
but now, determining evolutionary relationships includes matching patterns in nucleic
acid and protein sequences. The Bioinformatics Toolbox provides the following data
structure and functions for phylogenetic analysis.

Phylogenetic tree data — Read and write Newick-formatted tree files (phytreeread,
phytreewrite) into the MATLAB Workspace as phylogenetic tree objects (phytree).

Create a phylogenetic tree — Calculate the pairwise distance between biological
sequences (seqpdist), estimate the substitution rates (dnds, dndsml), build a
phylogenetic tree from pairwise distances (seqlinkage, seqneighjoin, reroot), and
view the tree in an interactive GUI that allows you to view, edit, and explore the data
(phytreeviewer or view). This GUI also allows you to prune branches, reorder, rename,
and explore distances.

Phylogenetic tree object methods — You can access the functionality of the
phytreeviewer user interface using methods for a phylogenetic tree object (phytree).
Get property values (get) and node names (getbyname). Calculate the patristic distances
between pairs of leaf nodes (pdist, weights) and draw a phylogenetic tree object in a
MATLAB Figure window as a phylogram, cladogram, or radial treeplot (plot). Manipulate
tree data by selecting branches and leaves using a specified criterion (select, subtree)
and removing nodes (prune). Compare trees (getcanonical) and use Newick-formatted
strings (getnewickstr).

See Also

More About

. “Sequence Utilities and Statistics” on page 1-11
. “Sequence Analysis”

Microarray Data Analysis Tools

Microarray Data Analysis Tools

The MATLAB environment is widely used for microarray data analysis, including reading,
filtering, normalizing, and visualizing microarray data. However, the standard
normalization and visualization tools that scientists use can be difficult to implement. The
toolbox includes these standard functions:

Microarray data — Read Affymetrix GeneChip files (affyread) and plot data
(probesetplot), ImaGene results files (imageneread), SPOT files (sptread) and
Agilent microarray scanner files (agferead). Read GenePix GPR files (gprread) and GAL
files (galread). Get Gene Expression Omnibus (GEO) data from the Web (getgeodata)
and read GEO data from files (geosoftread).

A utility function (magetfield) extracts data from one of the microarray reader
functions (gprread, agferead, sptread, imageneread).

Microarray normalization and filtering — The toolbox provides a number of methods
for normalizing microarray data, such as lowess normalization (malowess) and mean
normalization (manorm), or across multiple arrays (quantilenorm). You can use filtering
functions to clean raw data before analysis (geneentropyfilter, genelowvalfilter,
generangefilter, genevarfilter), and calculate the range and variance of values
(exprprofrange, exprprofvar).

Microarray visualization — The toolbox contains routines for visualizing microarray
data. These routines include spatial plots of microarray data (maimage, redgreencmap),
box plots (maboxplot), loglog plots (maloglog), and intensity-ratio plots (mairplot).
You can also view clustered expression profiles (clustergram, redgreencmap). You can
create 2-D scatter plots of principal components from the microarray data (mapcaplot).

Microarray utility functions — Use the following functions to work with Affymetrix
GeneChip data sets. Get library information for a probe (probelibraryinfo), gene
information from a probe set (probesetlookup), and probe set values from CEL and
CDF information (probesetvalues). Show probe set information from NetAffx ™
Analysis Center (probesetlink) and plot probe set values (probesetplot).

The toolbox accesses statistical routines to perform cluster analysis and to visualize the
results, and you can view your data through statistical visualizations such as
dendrograms, classification, and regression trees.

1-15

1 Getting Started

See Also

More About

. “Microarray Data Storage” on page 1-17
. “Microarray Analysis”

1-16

Microarray Data Storage

Microarray Data Storage

The Bioinformatics Toolbox includes functions, objects, and methods for creating, storing,
and accessing microarray data.

The object constructor function, DataMatrix, lets you create a DataMatrix object to
encapsulate data and metadata from a microarray experiment. A DataMatrix object stores
experimental data in a matrix, with rows typically corresponding to gene names or probe
identifiers, and columns typically corresponding to sample identifiers. A DataMatrix
object also stores metadata, including the gene names or probe identifiers (as the row
names) and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the same way you
reference data in a MATLAB array, that is, by using linear or logical indexing. Alternately,
you can reference this experimental data by gene (probe) identifiers and sample
identifiers. Indexing by these identifiers lets you quickly and conveniently access subsets
of the data without having to maintain additional index arrays.

Many MATLAB operators and arithmetic functions are available to DataMatrix objects by
means of methods. These methods let you modify, combine, compare, analyze, plot, and
access information from DataMatrix objects. Additionally, you can easily extend the
functionality by using general element-wise functions, dmarrayfun and dmbsxfun, and
by manually accessing the properties of a DataMatrix object.

Note For more information on creating and using DataMatrix objects, see “Representing
Expression Data Values in DataMatrix Objects” on page 4-5.

See Also

More About

. “Microarray Data Analysis Tools” on page 1-15
. “Microarray Analysis”

1-17

1 Getting Started

Mass Spectrometry Data Analysis

1-18

The mass spectrometry functions preprocess and classify raw data from SELDI-TOF and
MALDI-TOF spectrometers and use statistical learning functions to identify patterns.

Reading raw data — Load raw mass/charge and ion intensity data from comma-
separated-value (CSV) files, or read a JCAMP-DX-formatted file with mass spectrometry
data (jcampread) into the MATLAB environment.

You can also have data in TXT files and use the importdata function.

Preprocessing raw data — Resample high-resolution data to a lower resolution
(msresample) where the extra data points are not needed. Correct the baseline
(msbackadj). Align a spectrum to a set of reference masses (msalign) and visually verify
the alignment (msheatmap). Normalize the area between spectra for comparing
(msnorm), and filter out noise (mslowess and mssgolay).

Spectrum analysis — Load spectra into a GUI (msviewer) for selecting mass peaks and
further analysis.

The following graphic illustrates the roles of the various mass spectrometry functions in
the toolbox.

Mass Spectrometry Data Analysis

mzXML File

mzxmlread
mzXML Structure
mzxml2Z2peaks
T
Peak Lists msdotplot ot
(Centroided Data)
mspeaks msppresample
L i
Raw Reconstructed s & : Plot
Data Data
SemicontinuousSignal P e .| Mass Specti
Viewer

@

1-19

1 Getting Started

See Also

More About

. “Mass Spectrometry and Bioanalytics”
. “Data Formats and Databases” on page 1-8

1-20

Graph Theory Functions

Graph Theory Functions

Graph theory functions in the Bioinformatics Toolbox apply basic graph theory algorithms
to sparse matrices. A sparse matrix represents a graph, any nonzero entries in the matrix
represent the edges of the graph, and the values of these entries represent the associated
weight (cost, distance, length, or capacity) of the edge. Graph algorithms that use the
weight information will cancel the edge if a NaN or an Inf is found. Graph algorithms that
do not use the weight information will consider the edge if a NaN or an Inf is found,
because these algorithms look only at the connectivity described by the sparse matrix and
not at the values stored in the sparse matrix.

Sparse matrices can represent four types of graphs:

* Directed Graph — Sparse matrix, either double real or logical. Row (column) index
indicates the source (target) of the edge. Self-loops (values in the diagonal) are
allowed, although most of the algorithms ignore these values.

* Undirected Graph — Lower triangle of a sparse matrix, either double real or logical.
An algorithm expecting an undirected graph ignores values stored in the upper
triangle of the sparse matrix and values in the diagonal.

* Direct Acyclic Graph (DAG) — Sparse matrix, double real or logical, with zero
values in the diagonal. While a zero-valued diagonal is a requirement of a DAG, it does
not guarantee a DAG. An algorithm expecting a DAG will not test for cycles because
this will add unwanted complexity.

* Spanning Tree — Undirected graph with no cycles and with one connected
component.

There are no attributes attached to the graphs; sparse matrices representing all four
types of graphs can be passed to any graph algorithm. All functions will return an error
on nonsquare sparse matrices.

Graph algorithms do not pretest for graph properties because such tests can introduce a
time penalty. For example, there is an efficient shortest path algorithm for DAG, however
testing if a graph is acyclic is expensive compared to the algorithm. Therefore, it is
important to select a graph theory function and properties appropriate for the type of the
graph represented by your input matrix. If the algorithm receives a graph type that
differs from what it expects, it will either:

* Return an error when it reaches an inconsistency. For example, if you pass a cyclic
graph to the graphshortestpath function and specify Acyclic as the method
property.

1-21

1 Getting Started

* Produce an invalid result. For example, if you pass a directed graph to a function with
an algorithm that expects an undirected graph, it will ignore values in the upper
triangle of the sparse matrix.

The graph theory functions include graphallshortestpaths, graphconncomp,
graphisdag, graphisomorphism, graphisspantree, graphmaxflow,

graphminspantree, graphpred2path, graphshortestpath, graphtopoorder, and
graphtraverse.

See Also
More About

. “Graph Visualization” on page 1-23
. “Network Analysis and Visualization”

1-22

Graph Visualization

Graph Visualization

The Bioinformatics Toolbox includes functions, objects, and methods for creating,
viewing, and manipulating graphs such as interactive maps, hierarchy plots, and
pathways. This allows you to view relationships between data.

The object constructor function (biograph) lets you create a biograph object to hold
graph data. Methods of the biograph object let you calculate the position of nodes
(dolayout), draw the graph (view), get handles to the nodes and edges (getnodesbyid
and getedgesbynodeid) to further query information, and find relations between the
nodes (getancestors, getdescendants, and getrelatives). There are also methods
that apply basic graph theory algorithms to the biograph object.

Various properties of a biograph object let you programmatically change the properties of
the rendered graph. You can customize the node representation, for example, drawing pie
charts inside every node (CustomNodeDrawFcn). Or you can associate your own callback
functions to nodes and edges of the graph, for example, opening a Web page with more
information about the nodes (NodeCallback and EdgeCallback).

See Also

More About

. “Graph Theory Functions” on page 1-21
. “Network Analysis and Visualization”

1-23

1 Getting Started

Statistical Learning and Visualization

1-24

You can classify and identify features in data sets, set up cross-validation experiments,
and compare different classification methods.

The toolbox provides functions that build on the classification and statistical learning
tools in the Statistics and Machine Learning Toolbox software (classify, kmeans,
fitctree, and fitrtree).

These functions include imputation tools (knnimpute), and K-nearest neighbor classifiers
(knnclassify).

Other functions include set up of cross-validation experiments (crossvalind) and
comparison of the performance of different classification methods (classperf). In
addition, there are tools for selecting diversity and discriminating features
(rankfeatures, randfeatures).

Prototyping and Development Environment

Prototyping and Development Environment

The MATLAB environment lets you prototype and develop algorithms and easily compare
alternatives.

Integrated environment — Explore biological data in an environment that integrates
programming and visualization. Create reports and plots with the built-in functions for
mathematics, graphics, and statistics.

Open environment — Access the source code for the toolbox functions. The toolbox
includes many of the basic bioinformatics functions you will need to use, and it
includes prototypes for some of the more advanced functions. Modify these functions
to create your own custom solutions.

Interactive programming language — Test your ideas by typing functions that are
interpreted interactively with a language whose basic data element is an array. The
arrays do not require dimensioning and allow you to solve many technical computing
problems,

Using matrices for sequences or groups of sequences allows you to work efficiently
and not worry about writing loops or other programming controls.

Programming tools — Use a visual debugger for algorithm development and
refinement and an algorithm performance profiler to accelerate development.

1-25

1 Getting Started

Data Visualization

You can visually compare pairwise sequence alignments, multiply aligned sequences,
gene expression data from microarrays, and plot nucleic acid and protein characteristics.
The 2-D and volume visualization features let you create custom graphical
representations of multidimensional data sets. You can also create montages and
overlays, and export finished graphics to an Adobe® PostScript® image file or copy
directly into Microsoft PowerPoint®.

1-26

Algorithm Sharing and Application Deployment

Algorithm Sharing and Application Deployment

The open MATLAB environment lets you share your analysis solutions with other users,
and it includes tools to create custom software applications. With the addition of MATLAB
Compiler and MATLAB Compiler SDK, you can create standalone applications
independent of the MATLAB environment.

Share algorithms with other users — You can share data analysis algorithms
created in the MATLAB language across all supported platforms by giving files to
other users. You can also create GUIs within the MATLAB environment using the
Graphical User Interface Development Environment (GUIDE).

Deploy MATLAB GUlIs — Create a GUI within the MATLAB environment using
GUIDE, and then use MATLAB Compiler software to create a standalone GUI
application that runs separately from the MATLAB environment.

Create dynamic link libraries (DLLs) — Use MATLAB Compiler software to create
DLLs for your functions, and then link these libraries to other programming
environments such as C and C++.

Create COM objects — Use MATLAB Compiler SDK to create COM objects, and then
use a COM-compatible programming environment (Visual Basic®) to create a
standalone application.

Create Excel add-ins — Use MATLAB Compiler to create Excel add-in functions, and
then use these functions with Excel spreadsheets.

Create Java classes — Use MATLAB Compiler SDK to automatically generate Java
classes from algorithms written in the MATLAB programming language. You can run
these classes outside the MATLAB environment.

1-27

1 Getting Started

Exchange Bioinformatics Data Between Excel and
MATLAB

1-28

In this section...

“Using Excel and MATLAB Together” on page 1-28

“About the Example” on page 1-28

“Before Running the Example” on page 1-28

“Running the Example for the Entire Data Set” on page 1-29

“Editing Formulas to Run the Example on a Subset of the Data” on page 1-31

“Using the Spreadsheet Link product to Interact With the Data in MATLAB” on page 1-
33

Using Excel and MATLAB Together

If you have bioinformatics data in an Excel (2007 or newer) spreadsheet, use Spreadsheet
Link to:

* Connect Excel with the MATLAB Workspace to exchange data
* Use MATLAB and Bioinformatics Toolbox computational and visualization functions

About the Example

Note The following example assumes you have Spreadsheet Link software installed on
your system.

The Excel file used in the following example contains data from DeRisi, J.L., Iyer, V.R., and
Brown, P.O. (Oct. 24, 1997). Exploring the metabolic and genetic control of gene
expression on a genomic scale. Science 278(5338), 680-686. PMID: 9381177. The data
was filtered using the steps described in Gene Expression Profile Analysis.

Before Running the Example

1 If not already done, modify your system path to include the MATLAB root folder as
described in the Spreadsheet Link documentation.

Exchange Bioinformatics Data Between Excel and MATLAB

If not already done, enable the Spreadsheet Link Add-In as described in “Add-In
Setup” (Spreadsheet Link).

Close MATLAB and Excel if they are open.

Start Excel. MATLAB and Spreadsheet Link software automatically start.
From Excel, open the following file provided with the Bioinformatics Toolbox
software:

matlabroot\toolbox\bioinfo\biodemos\Filtered Yeastdata.xlsm

Note matlabroot is the MATLAB root folder, which is where MATLAB software is
installed on your system.

In the Excel software, enable macros. Click the Developer tab, and then select
Macro Security from the Code group. If the Developer tab is not displayed on the
Excel ribbon, consult Excel Help to display it. If you encounter the "Can't find project
or library" error, you might need to update the references in the Visual Basic
software. Open Visual Basic by clicking the Developer tab and selecting Visual
Basic. Then select Tools > References > SpreadsheetLink. If the MISSING:
exclink2007.xlam check box is selected, clear it.

Running the Example for the Entire Data Set

1

In the provided Excel file, note that columns A through H contain data from DeRisi et
al. Also note that cells J5, J6, J7, and J12 contain formulas using Spreadsheet Link
functions MLPutMatrix and MLEvalString.

Tip To view a cell's formula, select the cell, and then view the formula in the formula

bar atthe top of the Excel window.

Execute the formulas in cells]5, J6, J7, and J12, by selecting the cell, pressing F2,
and then pressing Enter.

Each of the first three cells contains a formula using the Spreadsheet Link function
MLPutMatrix, which creates a MATLAB variable from the data in the spreadsheet.
Cell J12 contains a formula using the Spreadsheet Link function MLEvalString,
which runs the Bioinformatics Toolbox clustergram function using the three
variables as input. For more information on adding formulas using Spreadsheet Link
functions, see “Create Diagonal Matrix Using Worksheet Cells” (Spreadsheet Link).

1-29

1 Getting Started

1-30

Cells 15, 16, 17 contain formulas that
use the MLPutMatrix function to
create three MATLAB variables.

Push the data into|3 MATLAB variables

4

o o O

Cell 112 contains a formula that uses
the MLEvalStringfunctionto
run the clustergramfunction.

<== MLPutMatrix("data",B4:H617)
<== MLPutMatrix("Genes” A4:AB1T)
<== MLPutMatrix("TimeSteps” B3:H3)

Run the clustergram command on the data using the 3 variables

—I-| U|<== MLEvalString(“clustergram(data, RowLabels',Genes, ColumnLabels’ TimeSteps)”)

Run the macro function Clustergram on the data using cell ranges

| 0]«== Clustergram(B4:H617 A4:A617 B3:H3)

Cell J17 contains a formula that uses
amacro function, Clustergram,
created in Visual Basic Editor.

3 Note that cell J17 contains a formula using a macro function Clustergram, which
was created in the Visual Basic Editor. Running this macro does the same as the
formulas in cells J5, J6, J7, and J12. Optionally, view the Clustergram macro
function by clicking the Developer tab, and then clicking the Visual Basic button

/—‘-_‘ZI (If the Developer tab is not on the Excel ribbon, consult Excel Help to display

it.)

For more information on creating macros using Visual Basic Editor, see “Create

Diagonal Matrix Using VBA Macro” (Spreadsheet Link).
4 Execute the formula in cell J17 to analyze and visualize the data:

a Select cell J17.

Exchange Bioinformatics Data Between Excel and MATLAB

b Press F2.
¢ Press Enter.

The macro function Clustergram runs creating three MATLAB variables (data,
Genes, and TimeSteps) and displaying a Clustergram window containing

dendrograms and a heat map of the data.

4\ Clustergram 1

File Tools Desktop Window Help

2| A0 | 0Bk

e

9 hours
0 hours
11.5 hours

13.5 hours

15.5 hours

18.5 hours.

20.5 hours

Editing Formulas to Run the Example on a Subset of the Data

1

Edit the formulas in cells J5 and J6 to analyze a subset of the data. Do this by editing

the formulas’ cell ranges to include data for only the first 30 genes:

1-31

1 Getting Started

1-32

a Select cell J5, and then press F2 to display the formula for editing. Change
H617 to H33, and then press Enter.

[EMLPuthatrizi"data" B4:H3F]

b Select cell J6, then press F2 to display the formula for editing. Change A617 to
A33, and then press Enter.

[EMLPutMatrixi" Genes" Ad:A33) |

Run the formulas in cells J5, J6, J7, and J12 to analyze and visualize a subset of the
data:

Select cell J5, press F2, and then press Enter.
Select cell J6, press F2, and then press Enter.
Select cell J7, press F2, and then press Enter.

Q N T 9

Select cell J12, press F2, and then press Enter.

Exchange Bioinformatics Data Between Excel and MATLAB

4\ Clustergram 2

File Tools Desktop Window Help

SLILY]

=

o o 1 e e oy e
it WO

-

]

3253853
65222202

TR WD
=0=02002

T 2 [0 0000 (OO0 00
C O AO0000000

— 0010

= MDSGB
L
FEBS0

gmmgooomoommob
ZoioooasaRion
(=10 (s e e Tt
00 N oy0e
672

B
C
C
W
0c
40
3w
048W
2C
12W
aw

o200
=D,

13.5 hours
15.5 hours
20.5 haurs
18.5 hours

Using the Spreadsheet Link product to Interact With the Data

in MATLAB

Use the MATLAB group on the right side of the Home tab to interact with the data:

1-33

1 Getting Started

o B A
ort & Find &
ilter = Seleck -
19 |\ Start MATLAE

Send data to MATLAE

-

Send named ranges to MATLAR
et data from MATLAE

Run MATLAE command

et MATLAE figure

MATLAE Function YWizard

Preferences
[

For example, create a variable in MATLAB containing a 3-by-7 matrix of the data, plot the
data in a Figure window, and then add the plot to your spreadsheet:

1 Click-drag to select cells B5 through H7.

0.305 0.146 0128 0.444 -0.707 -1.458 -1.935
0.157 0.175 0.467 -0.579 -0.52 -1.279 2125
0.246 0.796 0.334 0.551 1.02 1.646 1.157

From the MATLAB group, select Send data to MATLAB.
Type YAGenes for the variable name, and then click OK.

The variable YAGenes is added to the MATLAB Workspace as a 3-by-7 matrix.
From the MATLAB group, select Run MATLAB command.
5 Type plot(YAGenes ') for the command, and then click OK.

A Figure window displays a plot of the data.

Note Make sure you use the ' (transpose) symbol when plotting the data in this
step. You need to transpose the data in YAGenes so that it plots as three genes over
seven time intervals.

6 Select cell J20, and then click from the MATLAB group, select Get MATLAB figure.

1-34

Exchange Bioinformatics Data Between Excel and MATLAB

The figure is added to the spreadsheet.

1-35

1 Getting Started

Get Information from Web Database

1-36

In this section...

“What Are get Functions?” on page 1-36

“Creating the getpubmed Function” on page 1-37

What Are get Functions?

Bioinformatics Toolbox includes several get functions that retrieve information from
various Web databases. Additionally, with some basic MATLAB programming skills, you
can create your own get function to retrieve information from a specific Web database.

The following procedure illustrates how to create a function to retrieve information from
the NCBI PubMed database and read the information into a MATLAB structure. The NCBI
PubMed database contains biomedical literature citations and abstracts.

A service of the ULS. National Library of Medic

— and the National Instit
NCBI PubN}ed
www.pubmed.gov
All Databases PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Books
Searcth'ubMed | for| Go | Clear I Advanced Search (beta

[Limits | Previewindex | History | Ciipboard | Details |

About Entrez
Text Version To get started with PubMed, enter one or more search terms.

Entrez Pu Search terms may be topics, authors or journals.
COwverview
Help | FAQ

Tutorials . . N
New/Noteworthy BY M Set up.an automated PubMed update in fewer than
E-Utilities NCB]| five minutes.

PubMec

Journals Database
MeSH Database
Single Citation

Matcher . . .
Batch Citation Matcher Read the Mv NCBI Help material to explore other options, such as automated updates of

e ArETEm other databases, setting search filters, and highlighting search terms.

1. Create a My NCEI account.
2. Save vour search.
3. Your PubMed updates can be e-mailed directly to vou.

Special Queries

LinkQut

My NCBI PubMed is a service of the U.S. National Librarv of Medicine that includes over 17 million citations
from MEDLINE and other life science journals for biomedical articles back to the 1950s. PubMed
includes links to full text articles and other related resources.

Get Information from Web Database

Creating the getpubmed Function

The following procedure shows you how to create a function named getpubmed using the
MATLAB Editor. This function will retrieve citation and abstract information from PubMed
literature searches and write the data to a MATLAB structure.

Specifically, this function will take one or more search terms, submit them to the PubMed
database for a search, then return a MATLAB structure or structure array, with each
structure containing information for an article found by the search. The returned
information will include a PubMed identifier, publication date, title, abstract, authors, and
citation.

The function will also include property name-value pairs that let the user of the function
limit the search by publication date and limit the number of records returned. Below is
the step-by-step guide to create the function from the beginning. To see the completed m-
file, type edit getpubmed.m.

From MATLAB, open the MATLAB Editor by selecting File > New > Function.
2 Define the getpubmed function, its input arguments, and return values by typing:

function pmstruct = getpubmed(searchterm,varargin)
% GETPUBMED Search PubMed database & write results to MATLAB structure

3 Add code to do some basic error checking for the required input SEARCHTERM.

% Error checking for required input SEARCHTERM
if(nargin<l)

error(message('bioinfo:getpubmed:NotEnoughInputArguments'));
end

4 Create variables for the two property name-value pairs, and set their default values.

% Set default settings for property name/value pairs,

% 'NUMBEROFRECORDS' and 'DATEOFPUBLICATION'

maxnum = 50; % NUMBEROFRECORDS default is 50

pubdate = ''; % DATEOFPUBLICATION default is an empty string

5 Add code to parse the two property name-value pairs if provided as input.

% Parsing the property name/value pairs
num_argin = numel(varargin);
for n = 1:2:num_argin

arg = varargin{n};

switch lower(arg)

1-37

1 Getting Started

1-38

% If NUMBEROFRECORDS is passed, set MAXNUM
case 'numberofrecords'
maxnum = varargin{n+1};

% If DATEOFPUBLICATION is passed, set PUBDATE
case 'dateofpublication'
pubdate = varargin{n+1};

end
end

You access the PubMed database through a search URL, which submits a search term
and options, and then returns the search results in a specified format. This search
URL is comprised of a base URL and defined parameters. Create a variable
containing the base URL of the PubMed database on the NCBI Web site.

% Create base URL for PubMed db site

baseSearchURL = 'https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search';
Create variables to contain five defined parameters that the getpubmed function will
use, namely, db (database), term (search term), report (report type, such as
MEDLINE®), format (format type, such as text), and dispmax (maximum number of
records to display).

% Set db parameter to pubmed
dbOpt = '&db=pubmed’;

% Set term parameter to SEARCHTERM and PUBDATE
% (Default PUBDATE is '')
termOpt = ['&term=',searchterm, '+AND+', pubdate];

% Set report parameter to medline
reportOpt = '&report=medline’;

% Set format parameter to text
formatOpt = '&format=text’;

% Set dispmax to MAXNUM

% (Default MAXNUM is 50)

max0pt = ['&dispmax="',num2str(maxnum)];

Create a variable containing the search URL from the variables created in the
previous steps.

% Create search URL
searchURL = [baseSearchURL,dbOpt, termOpt, reportOpt, formatOpt,max0Opt];

Get Information from Web Database

10

11

12

13

Use the urlread function to submit the search URL, retrieve the search results, and
return the results (as text in the MEDLINE report type) in medlineText, a character
array.

medlineText = urlread(searchURL);

Use the MATLAB regexp function and regular expressions to parse and extract the
information in medlineText into hits, a cell array, where each cell contains the
MEDLINE-formatted text for one article. The first input is the character array to
search, the second input is a search expression, which tells the regexp function to
find all records that start with PMID -, while the third input, 'match"', tells the
regexp function to return the actual records, rather than the positions of the
records.

hits = regexp(medlineText, 'PMID-.*?(?=PMID|</pre>$)"', 'match');

Instantiate the pmstruct structure returned by getpubmed to contain six fields.

pmstruct = struct('PubMedID','', 'PublicationDate','"', 'Title"',"'",...
'Abstract','', 'Authors','', 'Citation','");

Use the MATLAB regexp function and regular expressions to loop through each

article in hits and extract the PubMed ID, publication date, title, abstract, authors,

and citation. Place this information in the pmstruct structure array.

for n = 1l:numel(hits)
pmstruct(n).PubMedID = regexp(hits{n},'(?<=PMID-).*?(?=\n)', 'match', 'once');

pmstruct(n).PublicationDate = regexp(hits{n},'(?<=DP -).*?(?=\n)','match', 'once');
pmstruct(n).Title = regexp(hits{n},'(?<=TI -).*?(?=PG -|AB -)',6 'match', 'once');
pmstruct(n).Abstract = regexp(hits{n},'(?<=AB -).*?(?=AD ~-)', 'match', 'once');
pmstruct(n).Authors = regexp(hits{n},'(?<=AU -).*?(?=\n)', 'match');
pmstruct(n).Citation = regexp(hits{n},'(?<=S0 -).*?(?=\n)', 'match', 'once');

end

Select File > Save As.

When you are done, your file should look similar to the getpubmed.m file included
with the Bioinformatics Toolbox software. The file is located at:

matlabroot\toolbox\bioinfo\biodemos\getpubmed.m

Note The notation matlabroot is the MATLAB root directory, which is the directory
where the MATLAB software is installed on your system.

1-39

High-Throughput Sequence Analysis

* “Work with Next-Generation Sequencing Data” on page 2-2

* “Manage Sequence Read Data in Objects” on page 2-8

* “Store and Manage Feature Annotations in Objects” on page 2-21

* “Visualize and Investigate Sequence Read Alignments” on page 2-28
* “Count Features from NGS Reads” on page 2-40

2 High-Throughput Sequence Analysis

Work with Next-Generation Sequencing Data

2-2

In this section...

“Overview” on page 2-2

“What Files Can You Access?” on page 2-2

“Before You Begin” on page 2-3

“Create a BiolndexedFile Object to Access Your Source File” on page 2-4
“Determine the Number of Entries Indexed By a BiolndexedFile Object” on page 2-4
“Retrieve Entries from Your Source File” on page 2-5

“Read Entries from Your Source File” on page 2-5

Overview

Many biological experiments produce huge data files that are difficult to access due to
their size, which can cause memory issues when reading the file into the MATLAB
Workspace. You can construct a BioIndexedFile object to access the contents of a large
text file containing nonuniform size entries, such as sequences, annotations, and cross-
references to data sets. The BioIndexedFile object lets you quickly and efficiently
access this data without loading the source file into memory.

You can use the BioIndexedFile object to access individual entries or a subset of
entries when the source file is too big to fit into memory. You can access entries using
indices or keys. You can read and parse one or more entries using provided interpreters
or a custom interpreter function.

Use the BioIndexedFile object in conjunction with your large source file to:

» Access a subset of the entries for validation or further analysis.
» Parse entries using a custom interpreter function.

What Files Can You Access?

You can use the BioIndexedFile object to access large text files.

Your source file can have these application-specific formats:

Work with Next-Generation Sequencing Data

+ FASTA
+ FASTQ
+ SAM

Your source file can also have these general formats:

* Table — Tab-delimited table with multiple columns. Keys can be in any column. Rows
with the same key are considered separate entries.

* Multi-row Table — Tab-delimited table with multiple columns. Keys can be in any
column. Contiguous rows with the same key are considered a single entry.
Noncontiguous rows with the same key are considered separate entries.

» Flat — Flat file with concatenated entries separated by a character vector,
typically //. Within an entry, the key is separated from the rest of the entry by a white
space.

Before You Begin

Before constructing a BioIndexedFile object, locate your source file on your hard drive
or a local network.

When you construct a BioIndexedFile object from your source file for the first time,
you also create an auxiliary index file, which by default is saved to the same location as
your source file. However, if your source file is in a read-only location, you can specify a
different location to save the index file.

Tip If you construct a BioIndexedFile object from your source file on subsequent
occasions, it takes advantage of the existing index file, which saves time. However, the
index file must be in the same location or a location specified by the subsequent
construction syntax.

Tip If insufficient memory is not an issue when accessing your source file, you may want
to try an appropriate read function, such as genbankread, for importing data from
GenBank files. .

Additionally, several read functions such as fastaread, fastqread, samread, and
sffread include a Blockread property, which lets you read a subset of entries from a
file, thus saving memory.

2-3

2 High-Throughput Sequence Analysis

2-4

Create a BiolndexedFile Object to Access Your Source File

To construct a BioIndexedFile object from a multi-row table file:

1

Create a variable containing the full absolute path of your source file. For your source
file, use the yeastgenes. sqd file, which is included with the Bioinformatics Toolbox
software.

sourcefile = which('yeastgenes.sgd');

Use the BioIndexedFile constructor function to construct a BioIndexedFile
object from the yeastgenes. sgd source file, which is a multi-row table file. Save
the index file in the Current Folder. Indicate that the source file keys are in column 3.
Also, indicate that the header lines in the source file are prefaced with !, so the
constructor ignores them.

gene2go0bj = BioIndexedFile('mrtab', sourcefile, '.', ...
'KeyColumn', 3, 'HeaderPrefix','!")

The BioIndexedFile constructor function constructs gene2go0bj, a
BioIndexedFile object, and also creates an index file with the same name as the
source file, but with an IDX extension. It stores this index file in the Current Folder
because we specified this location. However, the default location for the index file is
the same location as the source file.

Caution Do not modify the index file. If you modify it, you can get invalid results.
Also, the constructor function cannot use a modified index file to construct future
objects from the associated source file.

Determine the Number of Entries Indexed By a BiolndexedFile
Object

To determine the number of entries indexed by a BioIndexedFile object, use the
NumEntries property of the BioIndexedFile object. For example, for the gene2go0bj
object:

gene2go0bj.NumEntries

ans

6476

Work with Next-Generation Sequencing Data

Note For a list and description of all properties of a BioIndexedFile object, see
BioIndexedFile class.

Retrieve Entries from Your Source File

Retrieve entries from your source file using either:

* The index of the entry
* The entry key

Retrieve Entries Using Indices

Use the getEntryByIndex method to retrieve a subset of entries from your source file
that correspond to specified indices. For example, retrieve the first 12 entries from the
yeastgenes.sgd source file:

subset entries = getEntryByIndex(gene2goObj, [1:12]);
Retrieve Entries Using Keys

Use the getEntryByKey method to retrieve a subset of entries from your source file that
are associated with specified keys. For example, retrieve all entries with keys of AAC1
and AAD10 from the yeastgenes. sgd source file:

subset entries = getEntryByKey(gene2goObj, {'AACl' 'AAD10'});

The output subset entries is a character vector of concatenated entries. Because the
keys in the yeastgenes. sgd source file are not unique, this method returns all entries
that have a key of AAC1 or AAD10.

Read Entries from Your Source File

The BioIndexedFile object includes a read method, which you can use to read and
parse a subset of entries from your source file. The read method parses the entries using
an interpreter function specified by the Interpreter property of the BioIndexedFile
object.

Set the Interpreter Property

Before using the read method, make sure the Interpreter property of the
BioIndexedFile object is set appropriately.

2-5

2 High-Throughput Sequence Analysis

2-6

If you constructed a BiolndexedFile [The Interpreter property ...
object from ...

A source file with an application- By default is a handle to a function appropriate
specific format (FASTA, FASTQ, or for that file type and typically does not require
SAM) you to change it.

A source file with a table, multi-row By default is [], which means the interpreter is
table, or flat format an anonymous function in which the output is

equivalent to the input. You can change this to a
handle to a function that accepts a character
vector of one or more concatenated entries and
returns a structure or an array of structures
containing the interpreted data.

There are two ways to set the Interpreter property of the BioIndexedFile object:

* When constructing the BioIndexedFile object, use the Interpreter property
name/property value pair

» After constructing the BioIndexedFile object, set the Interpreter property

Note For more information on setting the Interpreter property of a BioIndexedFile
object, see BioIndexedFile class.

Read a Subset of Entries

The read method reads and parses a subset of entries that you specify using either entry
indices or keys.

Example

To quickly find all the gene ontology (GO) terms associated with a particular gene
because the entry keys are gene names:

1 Setthe Interpreter property of the gene2goObj BioIndexedFile object to a
handle to a function that reads entries and returns only the column containing the
GO term. In this case the interpreter is a handle to an anonymous function that
accepts character vectors and extracts those that start with the characters GO.

gene2golObj.Interpreter = @(x) regexp(x,'GO:\d+', 'match"')

Work with Next-Generation Sequencing Data

Read only the entries that have a key of YAT2, and return their GO terms.
GO _YAT2 entries = read(gene2goObj, 'YAT2')

GO YAT2 entries

'G0:0004092' 'G0:0005737' 'G0:0006066' 'GO:0006066' 'GO:0009437'

2-7

2 High-Throughput Sequence Analysis

Manage Sequence Read Data in Objects

2-8

In this section...

“Overview” on page 2-8
“Represent Sequence and Quality Data in a BioRead Object” on page 2-9

“Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap Object” on
page 2-10

“Retrieve Information from a BioRead or BioMap Object” on page 2-14
“Set Information in a BioRead or BioMap Object” on page 2-16
“Determine Coverage of a Reference Sequence” on page 2-17
“Construct Sequence Alignments to a Reference Sequence” on page 2-18

“Filter Read Sequences Using SAM Flags” on page 2-19

Overview

High-throughput sequencing instruments produce large amounts of sequence read data
that can be challenging to store and manage. Using objects to contain this data lets you
easily access, manipulate, and filter the data.

Bioinformatics Toolbox includes two objects for working with sequence read data.

Object Contains This Information Construct from One of These
BioRead * Sequence headers » FASTQ file
* Read sequences * SAM file

* Sequence qualities (base calling) |* FASTQ structure (created using
the fastqgread function)

* SAM structure (created using the
samread function)

* Cell arrays containing header,
sequence, and quality
information (created using the

fastqgread function)

Manage Sequence Read Data in Objects

Object Contains This Information Construct from One of These
BioMap * Sequence headers * SAM file
* Read sequences * BAM file
* Sequence qualities (base calling) |* SAM structure (created using the
+ Sequence alignment and samread function)
mapping information (relative to |* BAM structure (created using the
a single reference sequence), bamread function)
including mapping quality .

Cell arrays containing header,
sequence, quality, and mapping/
alignment information (created
using the samread or bamread
function)

Represent Sequence and Quality Data in a BioRead Object
Prerequisites

A BioRead object represents a collection of sequence reads. Each element in the object is
associated with a sequence, sequence header, and sequence quality information.

Construct a BioRead object in one of two ways:

* Indexed — The data remains in the source file. Constructing the object and accessing
its contents is memory efficient. However, you cannot modify object properties, other
than the Name property. This is the default method if you construct a BioRead object
from a FASTQ- or SAM-formatted file.

* In Memory — The data is read into memory. Constructing the object and accessing its
contents is limited by the amount of available memory. However, you can modify object
properties. When you construct a BioRead object from a FASTQ structure or cell
arrays, the data is read into memory. When you construct a BioRead object from a
FASTQ- or SAM-formatted file, use the InMemory name-value pair argument to read
the data into memory.

Construct a BioRead Object from a FASTQ- or SAM-Formatted File

Note This example constructs a BioRead object from a FASTQ-formatted file. Use
similar steps to construct a BioRead object from a SAM-formatted file.

2-9

2 High-Throughput Sequence Analysis

2-10

Use the BioRead constructor function to construct a BioRead object from a FASTQ-
formatted file and set the Name property:

BRObj 1

BioRead('SRR005164 1 50.fastq', 'Name', 'MyObject')

BRObj 1

BioRead with properties:

Quality: [50x1 File indexed property]
Sequence: [50x1 File indexed property]
Header: [50x1 File indexed property]
NSeqs: 50
Name: 'MyObject’

The constructor function construct a BioRead object and, if an index file does not already
exist, it also creates an index file with the same file name, but with an .IDX extension.
This index file, by default, is stored in the same location as the source file.

Caution Your source file and index file must always be in sync.
» After constructing a BioRead object, do not modify the index file, or you can get
invalid results when using the existing object or constructing new objects.

* If you modify the source file, delete the index file, so the object constructor creates a
new index file when constructing new objects.

Note Because you constructed this BioRead object from a source file, you cannot modify
the properties (except for Name) of the BioRead object.

Represent Sequence, Quality, and Alignment/Mapping Data in
a BioMap Object

Prerequisites
A BioMap object represents a collection of sequence reads that map against a single

reference sequence. Each element in the object is associated with a read sequence,
sequence header, sequence quality information, and alignment/mapping information.

Manage Sequence Read Data in Objects

When constructing a BioMap object from a BAM file, the maximum size of the file is
limited by your operating system and available memory.

Construct a BioMap object in one of two ways:

Indexed — The data remains in the source file. Constructing the object and accessing
its contents is memory efficient. However, you cannot modify object properties, other
than the Name property. This is the default method if you construct a BioMap object
from a SAM- or BAM-formatted file.

In Memory — The data is read into memory. Constructing the object and accessing its
contents is limited by the amount of available memory. However, you can modify object
properties. When you construct a BioMap object from a structure, the data stays in
memory. When you construct a BioMap object from a SAM- or BAM-formatted file, use
the InMemory name-value pair argument to read the data into memory.

Construct a BioMap Object from a SAM- or BAM-Formatted File

Note This example constructs a BioMap object from a SAM-formatted file. Use similar
steps to construct a BioMap object from a BAM-formatted file.

If you do not know the number and names of the reference sequences in your source
file, determine them using the saminfo or baminfo function and the
ScanDictionary name-value pair argument.

samstruct = saminfo('ex2.sam', 'ScanDictionary', true);
samstruct.ScannedDictionary

ans =

'seql’
'seq2’

Tip The previous syntax scans the entire SAM file, which is time consuming. If you
are confident that the Header information of the SAM file is correct, omit the
ScanDictionary name-value pair argument, and inspect the
SequenceDictionary field instead.

Use the BioMap constructor function to construct a BioMap object from the SAM file
and set the Name property. Because the SAM-formatted file in this example, ex2.sam,

2-11

2 High-Throughput Sequence Analysis

contains multiple reference sequences, use the SelectRef name-value pair
argument to specify one reference sequence, seql:

BMObj2 = BioMap('ex2.sam', 'SelectRef', 'seql', 'Name', 'MyObject')
BMObj2 =
BioMap with properties:

SequenceDictionary: 'seql'

Reference: [1501x1 File indexed property]
Signature: [1501x1 File indexed property]
Start: [1501x1 File indexed property]
MappingQuality: [1501x1 File indexed property]
Flag: [1501x1 File indexed property]
MatePosition: [1501x1 File indexed property]
Quality: [1501x1 File indexed property]
Sequence: [1501x1 File indexed property]
Header: [1501x1 File indexed property]

NSeqs: 1501

Name: 'MyObject'’

The constructor function constructs a BioMap object and, if index files do not already
exist, it also creates one or two index files:

* If constructing from a SAM-formatted file, it creates one index file that has the same
file name as the source file, but with an .IDX extension. This index file, by default, is
stored in the same location as the source file.

* If constructing from a BAM-formatted file, it creates two index files that have the same
file name as the source file, but one with a .BAI extension and one with
a .LINEARINDEX extension. These index files, by default, are stored in the same
location as the source file.

Caution Your source file and index files must always be in sync.
» After constructing a BioMap object, do not modify the index files, or you can get
invalid results when using the existing object or constructing new objects.

+ If you modify the source file, delete the index files, so the object constructor creates
new index files when constructing new objects.

2-12

Manage Sequence Read Data in Objects

Note Because you constructed this BioMap object from a source file, you cannot modify
the properties (except for Name and Reference) of the BioMap object.

Construct a BioMap Object from a SAM or BAM Structure

Note This example constructs a BioMap object from a SAM structure using samread.
Use similar steps to construct a BioMap object from a BAM structure using bamread.

1 Use the samread function to create a SAM structure from a SAM-formatted file:

SAMStruct = samread('ex2.sam');

2 To construct a valid BioMap object from a SAM-formatted file, the file must contain
only one reference sequence. Determine the number and names of the reference
sequences in your SAM-formatted file using the unique function to find unique
names in the ReferenceName field of the structure:

unique ({SAMStruct.ReferenceName})
ans =

'seql’ 'seq2’

3 Use the BioMap constructor function to construct a BioMap object from a SAM
structure. Because the SAM structure contains multiple reference sequences, use the
SelectRef name-value pair argument to specify one reference sequence, seql:

BMObjl = BioMap(SAMStruct, 'SelectRef', 'seql')

BMObj1
BioMap with properties:

SequenceDictionary: {'seql'}
Reference: {1501x1 cell}
Signature: {1501x1 cell}

Start: [1501x1 uint32]
MappingQuality: [1501x1 uint8]

Flag: [1501x1 uintl6]

MatePosition: [1501x1 uint32]
Quality: {1501x1 cell}
Sequence: {1501x1 cell}
Header: {1501x1 cell}

2-13

2 High-Throughput Sequence Analysis

2-14

NSeqs: 1501
Name: "'

Retrieve Information from a BioRead or BioMap Object
You can retrieve all or a subset of information from a BioRead or BioMap object.
Retrieve a Property from a BioRead or BioMap Object

You can retrieve a specific property from elements in a BioRead or BioMap object.

For example, to retrieve all headers from a BioRead object, use the Header property as
follows:

allHeaders = BRObjl.Header;

This syntax returns a cell array containing the headers for all elements in the BioRead
object.

Similarly, to retrieve all start positions of aligned read sequences from a BioMap object,
use the Start property of the object:

allStarts = BMObjl.Start;

This syntax returns a vector containing the start positions of aligned read sequences with
respect to the position numbers in the reference sequence in a BioMap object.

Retrieve Multiple Properties from a BioRead or BioMap Object

You can retrieve multiple properties from a BioRead or BioMap object in a single
command using the get method. For example, to retrieve both start positions and
headers information of a BioMap object, use the get method as follows:

multiProp = get(BMObjl, {'Start', 'Header'});

This syntax returns a cell array containing all start positions and headers information of a
BioMap object.

Note Property names are case sensitive.

For a list and description of all properties of a BioRead object, see BioRead class. For a
list and description of all properties of a BioMap object, see BioMap class.

Manage Sequence Read Data in Objects

Retrieve a Subset of Information from a BioRead or BioMap Object

Use specialized get methods with a numeric vector, logical vector, or cell array of
headers to retrieve a subset of information from an object. For example, to retrieve the
first 10 elements from a BioRead object, use the getSubset method:

newBRObj = getSubset(BRObjl, [1:10]);

This syntax returns a new BioRead object containing the first 10 elements in the original
BioRead object.

For example, to retrieve the first 12 positions of sequences with headers SRR005164.1,
SRR005164.7, and SRR005164.16, use the getSubsequence method:

subSeqs = getSubsequence(BRObj1l, ...
{'SRROO5164.1', 'SRRO0G5164.7', 'SRRO05164.16'}, [1:12]"')

subSeqs

'"TGGCTTTAAAGC'
'CCCGAAAGCTAG"
"AATTTTGCGGCT"

For example, to retrieve information about the third element in a BioMap object, use the
getInfo method:

Info 3 = getInfo(BMObjl, 3);

This syntax returns a tab-delimited character vector containing this information for the
third element:

* Sequence header

* SAM flags for the sequence

» Start position of the aligned read sequence with respect to the reference sequence
* Mapping quality score for the sequence

+ Signature (CIGAR-formatted character vector) for the sequence

* Sequence

* Quality scores for sequence positions

Note Method names are case sensitive.

2-15

2 High-Throughput Sequence Analysis

2-16

For a complete list and description of methods of a BioRead object, see BioRead class.
For a complete list and description of methods of a BioMap object, see BioMap class.

Set Information in a BioRead or BioMap Object
Prerequisites

To modify properties (other than Name and Reference) of a BioRead or BioMap object,
the data must be in memory, and not indexed. To ensure the data is in memory, do one of
the following:

* Construct the object from a structure as described in “Construct a BioMap Object
from a SAM or BAM Structure” on page 2-13.

* Construct the object from a source file using the InMemory name-value pair
argument.

Provide Custom Headers for Sequences

First, create an object with the data in memory:

BRObjl = BioRead('SRR005164 1 50.fastq', 'InMemory',true);

To provide custom headers for sequences of interest (in this case sequences 1 to 5), do
the following:

BRObjl.Header(1:5) = {'H1', 'H2', 'H3', 'H4', 'H5'};
Alternatively, you can use the setHeader method:
BRObjl = setHeader(BRObj1l, {'Hl1', 'H2', 'H3', 'H4', 'H5'}, [1:51]);

Several other specialized set methods let you set the properties of a subset of elements
in a BioRead or BioMap object.

Note Method names are case sensitive.

For a complete list and description of methods of a BioRead object, see BioRead class.
For a complete list and description of methods of a BioMap object, see BioMap class.

Manage Sequence Read Data in Objects

Determine Coverage of a Reference Sequence

When working with a BioMap object, you can determine the number of read sequences
that:

* Align within a specific region of the reference sequence
» Align to each position within a specific region of the reference sequence

For example, you can compute the number, indices, and start positions of the read
sequences that align within the first 25 positions of the reference sequence. To do so, use
the getCounts, getIndex, and getStart methods:

Cov

getCounts(BMObjl, 1, 25)
Cov =
12

Indices = getIndex(BMObjl, 1, 25)

Indices

OCoOoNOUR,WNR

10
11
12

startPos

getStart(BMObjl, Indices)

startPos

OoouUuTWwRE

2-17

2 High-Throughput Sequence Analysis

2-18

13
13
15
18
22
22
24

The first two syntaxes return the number and indices of the read sequences that align
within the specified region of the reference sequence. The last syntax returns a vector
containing the start position of each aligned read sequence, corresponding to the position
numbers of the reference sequence.

For example, you can also compute the number of the read sequences that align to each
of the first 10 positions of the reference sequence. For this computation, use the
getBaseCoverage method:

Cov

getBaseCoverage(BMObj1l, 1, 10)

Cov =

Construct Sequence Alignments to a Reference Sequence

It is useful to construct and view the alignment of the read sequences that align to a
specific region of the reference sequence. It is also helpful to know which read sequences
align to this region in a BioMap object.

For example, to retrieve the alignment of read sequences to the first 12 positions of the
reference sequence in a BioMap object, use the getAlignment method:

[Alignment_1 12, Indices] = getAlignment(BMObj2, 1, 12)
Alignment 1 12 =

CACTAGTGGCTC
CTAGTGGCTC
AGTGGCTC
GTGGCTC

GCTC

Manage Sequence Read Data in Objects

Indices =

Uk WNRE

Return the headers of the read sequences that align to a specific region of the reference
sequence:

alignedHeaders getHeader(BMObj2, Indices)

alignedHeaders

'B7_591:4:96:693:509"
'EAS54 65:7:152:368:113"
'EAS51 64:8:5:734:57"
'B7_591:1:289:587:906"
'EAS56 59:8:38:671:758"

Filter Read Sequences Using SAM Flags

SAM- and BAM-formatted files include the status of 11 binary flags for each read
sequence. These flags describe different sequencing and alignment aspects of a read
sequence. For more information on the flags, see the SAM Format Specification. The
filterByFlag method lets you filter the read sequences in a BioMap object by using
these flags.

Filter Unmapped Read Sequences

1 Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('exl.sam');

2 Usethe filterByFlag method to create a logical vector indicating the read
sequences in a BioMap object that are mapped.

LogicalVec mapped = filterByFlag(BMObj2, 'unmappedQuery', false);

3 Use this logical vector and the getSubset method to create a new BioMap object
containing only the mapped read sequences.

filteredBMObj 1 = getSubset(BMObj2, LogicalVec mapped);

2-19

http://samtools.sourceforge.net/SAM1.pdf

2 High-Throughput Sequence Analysis

2-20

Filter Read Sequences That Are Not Mapped in a Pair

1

Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('exl.sam');

Use the filterByFlag method to create a logical vector indicating the read
sequences in a BioMap object that are mapped in a proper pair, that is, both the read
sequence and its mate are mapped to the reference sequence.

LogicalVec paired = filterByFlag(BMObj2, 'pairedInMap', true);

Use this logical vector and the getSubset method to create a new BioMap object
containing only the read sequences that are mapped in a proper pair.

filteredBMObj 2 = getSubset(BMObj2, LogicalVec paired);

Store and Manage Feature Annotations in Objects

Store and Manage Feature Annotations in Objects

In this section...

“Represent Feature Annotations in a GFFAnnotation or GTFAnnotation Object” on page
2-21

“Construct an Annotation Object” on page 2-21

“Retrieve General Information from an Annotation Object” on page 2-22
“Access Data in an Annotation Object” on page 2-23

“Use Feature Annotations with Sequence Read Data” on page 2-24

Represent Feature Annotations in a GFFAnnotation or
GTFAnnotation Object

The GFFAnnotation and GTFAnnotation objects represent a collection of feature
annotations for one or more reference sequences. You construct these objects from GFF
(General Feature Format) and GTF (Gene Transfer Format) files. Each element in the
object represents a single annotation. The properties and methods associated with the
objects let you investigate and filter the data based on reference sequence, a feature
(such as CDS or exon), or a specific gene or transcript.

Construct an Annotation Object

Use the GFFAnnotation constructor function to construct a GFFAnnotation object
from either a GFF- or GTF-formatted file:

GFFAnnotObj GFFAnnotation('tair8 1.gff"')

GFFAnnotObj
GFFAnnotation with properties:

FieldNames: {1x9 cell}
NumEntries: 3331

Use the GTFAnnotation constructor function to construct a GTFAnnotation object
from a GTF-formatted file:

GTFAnnotObj = GTFAnnotation('hum37 2 1M.gtf')

2-21

2 High-Throughput Sequence Analysis

2-22

GTFAnnotObj =
GTFAnnotation with properties:
FieldNames: {1x11 cell}
NumEntries: 308

Retrieve General Information from an Annotation Object

Determine the field names and the number of entries in an annotation object by accessing
the FieldNames and NumEntries properties. For example, to see the field names for
each annotation object constructed in the previous section, query the FieldNames
property:

GFFAnnotObj.FieldNames
ans =
Columns 1 through 6
'Reference’ 'Start' 'Stop' 'Feature' 'Source’ 'Score'
Columns 7 through 9
'Strand’ '"Frame' "Attributes’
GTFAnnotObj.FieldNames
ans =
Columns 1 through 6
'Reference’ 'Start' 'Stop' 'Feature' 'Gene’ 'Transcript'
Columns 7 through 11

'Source' 'Score' 'Strand’ 'Frame' "Attributes’

Determine the range of the reference sequences that are covered by feature annotations
by using the getRange method with the annotation object constructed in the previous
section:

range = getRange(GFFAnnotObj)

Store and Manage Feature Annotations in Objects

range =

3631 498516

Access Data in an Annotation Object
Create a Structure of the Annotation Data

Creating a structure of the annotation data lets you access the field values. Use the
getData method to create a structure containing a subset of the data in a
GFFAnnotation object constructed in the previous section.

% Extract annotations for positions 1 through 10000 of the
% reference sequence
AnnotStruct = getData(GFFAnnotObj,1,10000)

AnnotStruct =

60x1 struct array with fields:
Reference
Start
Stop
Feature
Source
Score
Strand
Frame
Attributes

Access Field Values in the Structure
Use dot indexing to access all or specific field values in a structure.

For example, extract the start positions for all annotations:

Starts = AnnotStruct.Start;

Extract the start positions for annotations 12 through 17. Notice that you must use square
brackets when indexing a range of positions:

Starts 12 17 [AnnotStruct(12:17).Start]

Starts 12 17

4706 5174 5174 5439 5439 5631

2-23

2 High-Throughput Sequence Analysis

2-24

Extract the start position and the feature for the 12th annotation:
Start 12 = AnnotStruct(12).Start
Start 12

4706

Feature 12 AnnotStruct(12).Feature

Feature 12

CDS

Use Feature Annotations with Sequence Read Data

Investigate the results of HTS sequencing experiments by using GFFAnnotation and
GTFAnnotation objects with BioMap objects. For example, you can:

* Determine counts of sequence reads aligned to regions of a reference sequence
associated with specific annotations, such as in RNA-Seq workflows.

» Find annotations within a specific range of a peak of interest in a reference sequence,
such as in ChIP-Seq workflows.

Determine Annotations of Interest

1 Construct a GTFAnnotation object from a GTF- formatted file:

GTFAnnotObj = GTFAnnotation('hum37_2 1M.gtf');

2 Use the getReferenceNames method to return the names for the reference
sequences for the annotation object:

refNames = getReferenceNames(GTFAnnotObj)

refNames

'chr2'

3 Use the getFeatureNames method to retrieve the feature names from the
annotation object:

featureNames = getFeatureNames(GTFAnnotObj)

featureNames

Store and Manage Feature Annotations in Objects

'CDS'
‘exon’
'start _codon'
'stop_codon'

4 Use the getGeneNames method to retrieve a list of the unique gene names from the
annotation object:

geneNames = getGeneNames (GTFAnnotObj)

geneNames

‘uc02qvu.2’
'uc02qvv.2'
'uc02qvw.2'’
'uc02qvx.2'
'uc02qvy.2'
'uc02qvz.2'
'uc02qwa.2’
'uc02qwb .2’
'uc002gqwc. 1’
'uc02qwd.2’
'uc002qwe. 3’
'uc02qwf .2’
'uc02qwg .2’
'uc002qwh .2’
'uc002gqwi.3’
'uc02qwk.2’
'ucoo2qwl.2’
'uc002qwm.1’
‘uc002qwn.1’
'uc002gqwo. 1’
'uc02qwp .2’
'uc02qwq.2'’
‘uc0lOewe.2’
'uc0l10ewf.1'
'uc010ewg.2'’
'uc010ewh.1’
'uc0l0ewi.2’
'uc010yim.1’

The previous steps gave us a list of available reference sequences, features, and genes
associated with the available annotations. Use this information to determine annotations
of interest. For instance, you might be interested only in annotations that are exons
associated with the uc002qvv.2 gene on chromosome 2.

2-25

2 High-Throughput Sequence Analysis

2-26

Filter Annotations

Use the getData method to filter the annotations and create a structure containing only
the annotations of interest, which are annotations that are exons associated with the
uc002qvv.2 gene on chromosome 2.

AnnotStruct = getData(GTFAnnotObj, 'Reference','chr2', ...
'Feature', 'exon', 'Gene', 'uc002qvv.2")

AnnotStruct

12x1 struct array with fields:

Reference
Start

Stop
Feature
Gene
Transcript
Source
Score
Strand
Frame
Attributes

The return structure contains 12 elements, indicating there are 12 annotations that meet
your filter criteria.

Extract Position Ranges for Annotations of Interest

After filtering the data to include only annotations that are exons associated with the
uc002qvv.2 gene on chromosome 2, use the Start and Stop fields to create vectors of the
start and end positions for the ranges associated with the 12 annotations.

StartPos = [AnnotStruct.Start];
EndPos = [AnnotStruct.Stop];

Determine Counts of Sequence Reads Aligned to Annotations

Construct a BioMap object from a BAM-formatted file containing sequence read data
aligned to chromosome 2.

BMObj3 = BioMap('ex3.bam');

Store and Manage Feature Annotations in Objects

Then use the range for the annotations of interest as input to the getCounts method of a
BioMap object. This returns the counts of short reads aligned to the annotations of
interest.

counts = getCounts(BMObj3,StartPos,EndPos, 'independent', true)

counts
1399

54

221

97
125

65

12

2-27

2 High-Throughput Sequence Analysis

Visualize and Investigate Sequence Read Alignments

2-28

In this section...

“When to Use the NGS Browser to Visualize and Investigate Data” on page 2-28
“Open the NGS Browser” on page 2-29

“Import Data into the NGS Browser” on page 2-30

“Zoom and Pan to a Specific Region of the Alignment” on page 2-32
“View Coverage of the Reference Sequence” on page 2-33

“View the Pileup View of Short Reads” on page 2-33

“Compare Alignments of Multiple Data Sets” on page 2-34

“View Location, Quality Scores, and Mapping Information” on page 2-35
“Flag Reads” on page 2-36

“Evaluate and Flag Mismatches” on page 2-37

“View Insertions and Deletions” on page 2-38

“View Feature Annotations” on page 2-38

“Print and Export the Browser Image” on page 2-39

When to Use the NGS Browser to Visualize and Investigate
Data

The NGS Browser lets you visually verify and investigate the alignment of sequence
reads to a reference sequence, in support of analyses that measure genetic variations and
gene expression. The NGS Browser lets you:

* Visualize sequence reads aligned to a nucleotide reference sequence.

* Compare multiple data sets aligned against a common reference sequence.

* View coverage of different bases and regions of the reference sequence.

» Investigate quality and other details of aligned reads.

* Identify mismatches due to base-calling errors or polymorphisms.

* Visualize insertions and deletions.

* Retrieve feature annotations relative to a specific region of the reference sequence.
» Investigate regions of interest in the alignment, determined by various analyses.

Visualize and Investigate Sequence Read Alignments

You can visualize and investigate the aligned data before, during, or after any

preprocessing (filtering, quality recalibration) or analysis steps you perform on the
aligned data.

Open the NGS Browser

To open the NGS Browser, type the following in the MATLAB Command Window:

ngsbrowser

Alternatively, click the NGS Browser on the Apps tab.

<\ NGS Browser | |
File Desktop Window Help

Center on Position: |0 [| @&

B ek st 2 x

Overview

‘| BB %

Mame Type Visible Data Source

Ruler

Settings " x

Visible range for display (kb 10
Show Overview
Specify nucleotide colors:

-AM-c -G -7 H-N

Read name Base Pos

2-29

2 High-Throughput Sequence Analysis

Import Data into the NGS Browser

Ruler indicates maximum coveragein display range

Rubberband indicates range displayed in 3 tracks

Chverview 1,569 bp
3 I I I i |
/ 500 1,000 1,500
Ruler /
784 bp
4%;- 500 bp G600 bp 700 bp 00 bp 900 bp 1,000 bp 1,100 bp i
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[T UL OO OO T 0O 0G0 AR
= exl i il
[| [=
[|
4 |
| I [|
| I 1 | 1l
Il |
| | |
| Il
| | 1} |
1 | 1 I
| I 1 |
II | | |
| I | |
| |
! I |
I 4 | I |
| | |
|1 | | o ! Il
Il | |
| | i
 features] r aa—— -
i

Browser Displaying Reference Track, One Alignment Track, and One Annotation Track
Import a Reference Sequence

You can import a single reference sequence into the NGS Browser. The reference
sequence must be in a FASTA file.

2-30

Visualize and Investigate Sequence Read Alignments

1 Select File > Add Data from File.
2 In the Open dialog box, select a FASTA file, and then click Open.

Tip You can use the getgenbank function with the ToFile and SequenceOnly name-
value pair arguments to retrieve a reference sequence from the GenBank database and
save it to a FASTA-formatted file.

Import Sequence Read Alignment Data

You can import multiple data sets of sequence read alignment data. The alignment data
must be in either of the following:

* BioMap object

Tip Construct a BioMap object on page 2-10 from a SAM- or BAM-formatted file to
investigate, subset, and filter on page 2-19 the data before importing it into the NGS
Browser.

¢ SAM- or BAM-formatted file

Note Your SAM- or BAM-formatted file must:

* Have reads ordered by start position in the reference sequence.

* Have an IDX index file (for a SAM-formatted file) or BAI and LINEARINDEX index
files (for a BAM-formatted file) stored in the same location as your source file.
Otherwise, the source file must be stored in a location to which you have write
access, because MATLAB needs to create and store index files in this location.

Tip Try using SAMtools to check if the reads in your SAM- or BAM-formatted file are
ordered by position in the reference sequence, and also to reorder them, if needed.

Tip If you do not have index files (IDX or BAI and LINEARINDEX) stored in the same
location as your source file, and your source file is stored in a location to which you do
not have write access, you cannot import data from the source file directly into the
browser. Instead, construct a BioMap object from the source file using the IndexDir
name-value pair argument, and then import the BioMap object into the browser.

2-31

https://www.ncbi.nlm.nih.gov/Genbank/
http://samtools.sourceforge.net/

2 High-Throughput Sequence Analysis

2-32

To import sequence read alignment data:

1 Select File > Add Data from File or File > Import Alignment Data from
MATLAB Workspace.
Select a SAM-formatted file, BAM-formatted file, or BioMap object.

3 Ifyou select a file containing multiple reference sequences, in the Select Reference
dialog box, select a reference or scan the file for available references and their
mapped reads counts. Click OK.

4 Repeat the previous steps to import additional data sets.
Import Feature Annotations

You can import multiple sets of feature annotations from GFF- or GTF-formatted files that
contain data for a single reference sequence.

1 Select File > Add Data from File.
2 Inthe Open dialog box, select a GFF- or GTF-formatted file, and then click Open.
3 Repeat the previous steps to import additional annotations.

Zoom and Pan to a Specific Region of the Alignment

To zoom in and out:

Use the A =X toolbar buttons,
or click-drag an edge of the rubberband in the Overview area.

= =

1,000

To pan across the alignment:

Use the <> toolbar buttons,
or click-drag the rubberband in the Overview area.
. = -

1,000 %}

Tip Use the left and right arrow keys to pan in one base pair (bp) increments.

Visualize and Investigate Sequence Read Alignments

View Coverage of the Reference Sequence

At the top of each alignment track, the coverage view displays the coverage of each base
in the reference sequence. The vertical ruler on the left edge of the coverage view
indicates the maximum coverage in the display range. Hover the mouse pointer over a
position in the coverage view to display the location and counts.

CT CTTCCACLGTCTCATCT C TLCACT TLCGLC

r4s I::?
Counts: 45
Location: 896

Note The browser computes coverage at the base pair resolution, instead of binning,
even when zoomed out.

To change the percent coverage displayed, click anywhere in the alignment track, and
then edit the Alignment Coverage settings.

Vertical viewing range(%:):

Min: |0
Mazx |100

Tip Set Max to a value greater than 100, if needed, when comparing the coverage of
multiple tracks of reads.

View the Pileup View of Short Reads

Each alignment track includes a pileup view of the short reads aligned to the reference
sequence.

2-33

2 High-Throughput Sequence Analysis

2-34

T TCCCATTT CCCCTCT CCOTTCTATTTOT T C

Limit the depth of the reads displayed in the pileup view by setting the Maximum
display read depth in the Alignment Pileup settings.

Maximum display read depth: 1,000
Mapplng quality threshold:

QA" g WP o J\I\f

Tip Limiting the depth of short reads in the pileup view does not change the counts
displayed in the coverage view.

Compare Alignments of Multiple Data Sets

Compare multiple data sets, with each data set in its own track, against a common
reference sequence. Use the Track List to show/hide, order, and delete tracks of data.

Visualize and Investigate Sequence Read Alignments

4\ NGS Browser
File Desktop Window Help

[ESNECH =3

Center on Position: 155,537,355

EIEE)

Browser

Overview

159 mb

il

(BB %

S0M

100M

150M

Name

Ruler

151 bp

155,537,680 bp 155,537,920 bp 155,537,940 bp 155,537,960 bp 155,537,580 bp 155,538,000 bp 155,538,020 bp
.

hs_ref GRCh37.p2_.

Type

hs_ref GRCh37.p2_chi7 [Sequence

Visible Data Source
Misandbox...

S1BMObj

Short Read....

]
@] |[MATLABW.
]

s5BMObj

Short Read....

MATLAB W.

P L L S S v

KR

= s1BMObj

T

Settings A x

Vertical viewing range(%):
Min: |0
Max: 100

E s5BMObj

m

1| Maximum display read depth: [1,000

Mapping quality threshold: |20

- Flag duplicate reads

~ Flag reads with unmapped pair
Shade mismatch bases by Phred quality:

(Requires reference sequence)
Min: |5
Max: 39
[] Show all bases (Requires sufficient zoom)

[Color by strand:
~ Forward reads

= Reverse reads

Visible range for display (kb): 10
Shouw Overview
Specify nucleotide colors:

~AM-C -6 -7 H-N

Counts: 2 Base Pos 155,538,030

View Location, Quality Scores, and Mapping Information

Hover the mouse pointer over a position in a read to display strand direction, location,
quality, and mapping information for the base, the read, and its paired mate.

2-35

2 High-Throughput Sequence Analysis

Read name = EAS]1_95:7:55:506:125
Alignment start = 817 (+]

Cigar = 35M

Mapped = yes

Mapping quality = 99
Location: 822

Base =

Base Phred quality = 60

Pair = EAS]_95:7:55:506:125:0 (-]
Pair is mapped = yes

Flag Reads

Click anywhere in an alignment track to display the Alignment Pileup settings.

Maximum display read depth: (1,000
Mapping quality threshold: |20

P - Flag duplicate reads
[- Flag reads with unmapped pair
Shade rnismatch bases by Phred quality:

(Requires reference sequence)

Min: |3
Max: |3p

[] Show all bases (Requires sufficient zoom)

[] Calor by strand:

* Forward reads

* Reverse reads

2-36

Visualize and Investigate Sequence Read Alignments

Flag Reads with Low Mapping Quality

Set the Mapping quality threshold in the Alignment Pileup section to flag low-quality
reads. Reads with a mapping quality below this level appear in a lighter shade of gray.

Flag Duplicate Reads
Select Flag duplicate reads and select an outline color.
Flag Reads with Unmapped Pairs

Select Flag reads with unmapped pair and select an outline color.

Evaluate and Flag Mismatches
Mismatches display as colored blocks or letters, depending on the zoom level.

Zoomed out view of read — Mismatches display as bars

C T C C T

Zoomed in view of read — Mismatches display as letters

In addition to the base Phred quality information that displays in the tooltip, you can
visualize quality differences by using the Shade mismatch bases by Phred quality
settings.

Shade mismatch bases by Phred quality:
(Requires reference sequence)

Min: 3
Max: |30

(W N W Y Y N N N Ny

The mismatch blocks or letters display in:

* Light shade — Mismatch bases with Phred scores below the minimum

2-37

2 High-Throughput Sequence Analysis

2-38

e Graduation of medium shades — Mismatch bases with Phred scores within the
minimum to maximum range

* Dark shade — Mismatch bases with Phred scores above the maximum
View Insertions and Deletions
The NGS Browser designates insertions with a ! symbol. Hover the mouse pointer over

the insertion symbol to display information about it.

!

Read name = EASS0_65:1:163:846:223
Insertion: CATAG

The NGS Browser designates deletions with dashes.

View Feature Annotations

After importing a feature annotation file, you can zoom and pan to view feature
annotations associated with a region of interest in the alignment. Hover the mouse
pointer over the feature annotation.

L

Location: 180,866 .. 181,324
Type: CD5

Score =00

Parent: ¥38C1AA4

Source: curated

Visualize and Investigate Sequence Read Alignments

Print and Export the Browser Image

Print or export the browser image by selecting File > Print Image or File > Export
Image.

2-39

2 High-Throughput Sequence Analysis

Count Features from NGS Reads

2-40

This example shows how to count features from paired-end sequencing reads after
aligning them to the whole human genome curated by the Genome Reference Consortium.
This example uses Genome Reference Consortium Human Build 38 patch release 12
(GRCh38.p12) as the human genome reference.

Prerequisites and Data Set

This example works on the UNIX® and Mac platforms only. Download the Bioinformatics
Toolbox™ Interface for Bowtie Aligner support package from the Add-On Explorer.

This example assumes you have:

* Downloaded and extracted the RefSeq assembly from Genome Reference Consortium
Human Build 38 patch release 12 (GRCh38.p12).

* Downloaded and organized some paired-end reads data. This example uses the exome
sequencing data from the 1000 genomes project. Paired-end reads are indicated by
' 1'and ' 2'in the filenames following the accession number. Here is one possibility for
how the data can be organized in folders:

sequence/
+--HGOOO96/
| +--SRR077487 1.filt.fastq

| +--SRRO77487 2.filt.fastq
| +--SRR081241 1.filt.fastq
| +--SRR081241 2.filt.fastq
I
+--HGOOO97
+-- SRR765989 1.filt.fastq
+-- SRR765989 2.filt.fastq
Build Index

Construct an index for aligning reads to the reference using bowtie2build. The file

GCF 000001405.38 GRCh38.pl2 genomic.fna contains the human reference genome
in the FASTA format. bowtieIdx is the base name of the reference index files. The ' - -
threads 8' option specifies the number of parallel threads to build index files faster.

bowtieIdx
buildFlag

'GCF_000001405.38 GRCh38.pl2 genomic.index';
bowtie2build('GCF 000001405.38 GRCh38.pl2 genomic.fna',...
bowtieIdx, '--threads 8');

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38
http://www.internationalgenome.org/data-portal/sample

Count Features from NGS Reads

Align Reads to Reference

Use the helper function alignAll1Reads to align each set of paired-end reads to the
reference. The function produces a SAM file in the current folder for each sample in the
'sequence' folder.

addpath(fullfile(matlabroot, 'examples', 'bioinfo', 'main')); % Make sure the supporting -
type alignAllReads

function samFiles = alignAllReads(indexBaseName, inputDir, outputDir)
%ALIGNALLREADS Helper function for CountFeaturesExample

SAMFILES = alignAllReads (INDEXBASENAME, INPUTDIR, OUTPUTDIR) aligns
paired-end sequencing reads using Bowtie2 to a prebuilt index,
producing SAM-formatted alignment files. INDEXBASENAME

is a character vector specifying the prefix of the index files
created with BOWTIE2BUILD. INPUTDIR contains subdirectories for each
sample containing paired-end reads in FASTQ format:

INPUTDIR/

+-- HGOOOIG/

| +-- SRRO77487 1.filt.fastq
| +-- SRRO77487 2.filt.fastq
| +-- SRRO81241 1.filt.fastq
| +-- SRRO81241 2.filt.fastq
|

+-- HGOOO97/

+-- SRR765989 1.filt.fastq
+-- SRR765989 2.filt.fastq

NOTE: each mate is distinguished by the ' 1' or ' 2' after the
accession number in the filename.

SAMFILES is a cell array of the resulting SAM-formatted files created
with Bowtie2, and are placed in OUTPUTDIR.

0° 0% 0° 0° A° A° A° A° A° A° A° O° A O° A° A° O° A° A° O° O° o° O° o°

o°

Copyright 2018 The MathWorks, Inc.

% Use dir() to identify sample names (subfolders of inputDir).
d = dir(inputDir);
samples = {d(3:end).name}; % skip special '.' & '..' folders

samFiles = strcat(samples, '.sam');

for s=1:numel(samples)

2-41

2 High-Throughput Sequence Analysis

2-42

% Identify mate pairs of reads for each sample
sampleReadsPath = fullfile(inputDir, samples{s});

readsl = dir([sampleReadsPath '/* 1*']);
reads2 = dir([sampleReadsPath '/* 2*']);
readsl = fullfile(sampleReadsPath, {readsl(:).name});
reads2 = fullfile(sampleReadsPath, {reads2(:).name});

% Get full filename to SAM file
samFiles{s} = fullfile(outputDir, samFiles{s});

% Perform alignment, if file doesn't exist
if ~exist(samFiles{s}, 'file')
bowtie2(indexBaseName, readsl, reads2, samFiles{s}, '-p 2');
end
end
end

samFiles = alignAllReads(bowtieIdx, 'sequence',"'.");

Selectively Align to Gene of Interest

SAM files can be very large. Use BioMap to select only the data for the correct reference.
For this example, consider APOE, which is a gene on Chromosome 19 linked to
Alzheimer's disease. Create a set of smaller BAM files for APOE to improve performance.

apoeRef 'NC_000019.10'; % Reference name for Chromosome 19 in HG38
bamFiles strrep(samFiles,'.sam','.bam');
for i=1l:numel(samFiles)
if ~exist(bamFiles{i}, 'file")
bm = BioMap(samFiles{i}, 'SelectReference',apoeRef);
write(bm, bamFiles{i}, 'Format', 'bam');
end
end

Summarize Read Counts

Use featurecount to compare the number of transcripts for each APOE variant using a
GTF file. A full table of features is included in the GRCh38.p12 assembly in GFF format,
which can be converted to GTF using cuffgffread. This example uses a simplified GTF
based on APOE transcripts. APOE_gene.gtf is included with the software.

[FeatTable, Summary] = featurecount('APOE gene.gtf',6bamFiles,...
'Metafeature', 'transcript _id');

Count Features from NGS Reads

Processing GTF file APOE gene.gtf ...
Processing BAM file ./HGO0096.bam ...
Processing reference NC 000019.10 ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000
110000
120000
130000
140000
150000
160000
170000
180000
190000
200000
210000
220000
230000
240000
250000
260000
270000
280000
290000
300000
310000
320000
330000
340000
350000
360000
370000
380000
390000
400000
410000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

2-43

2 High-Throughput Sequence Analysis

2-44

420000
430000
440000
450000
460000
470000
480000
490000
500000
510000
520000
530000
540000
550000
560000
570000
580000
590000
600000
610000
620000
630000
640000
650000
660000
670000
680000
690000
700000
710000
720000
730000
740000
750000
760000
770000
780000
790000
800000
810000
820000
830000
840000
850000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

Count Features from NGS Reads

860000
870000
880000
890000
900000
910000
920000
930000
940000
950000
960000
970000
980000
990000
1000000
1010000
1020000
1030000
1040000
1050000
1060000
1070000
1080000
1090000
1100000
1110000
1120000
1130000
1140000
1150000
1160000
1170000
1180000
1190000
1200000
1210000
1220000
1230000
1240000
1250000
1260000
1270000
1280000
1290000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-45

2 High-Throughput Sequence Analysis

2-46

1300000
1310000
1320000
1330000
1340000
1350000
1360000
1370000
1380000
1390000
1400000
1410000
1420000
1430000
1440000
1450000
1460000
1470000
1480000
1490000
1500000
1510000
1520000
1530000
1540000
1550000
1560000
1570000
1580000
1590000
1600000
1610000
1620000
1630000
1640000
1650000
1660000
1670000
1680000
1690000
1700000
1710000
1720000
1730000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

Count Features from NGS Reads

1740000
1750000
1760000
1770000
1780000
1790000
1800000
1810000
1820000
1830000
1840000
1850000
1860000
1870000
1880000
1890000
1900000
1910000
1920000
1930000
1940000
1950000
1960000
1970000
1980000
1990000
2000000
2010000
2020000
2030000
2040000
2050000
2060000
2070000
2080000
2090000
2100000
2110000
2120000
2130000
2140000
2150000
2160000
2170000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-47

2 High-Throughput Sequence Analysis

2-48

2180000
2190000
2200000
2210000
2220000
2230000
2240000
2250000
2260000
2270000
2280000
2290000
2300000
2310000
2320000
2330000
2340000
2350000
2360000
2370000
2380000
2390000
2400000
2410000
2420000
2430000
2440000
2450000
2460000
2470000
2480000
2490000
2500000
2510000
2520000
2530000
2540000
2550000
2560000
2570000
2580000
2590000
2600000
2610000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

Count Features from NGS Reads

2620000
2630000
2640000
2650000
2660000
2670000
2680000
2690000
2700000
2710000
2720000
2730000
2740000
2750000
2760000
2770000
2780000
2790000
2800000
2810000
2820000
2830000
2840000
2850000
2860000
2870000
2880000
2890000
2900000
2910000
2920000
2930000
2940000
2950000
2960000
2970000
2980000
2990000
3000000
3010000
3020000
3030000
3040000
3050000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-49

2 High-Throughput Sequence Analysis

2-50

3060000
3070000
3080000
3090000
3100000
3110000
3120000
3130000
3140000
3150000
3160000
3170000
3180000
3190000
3200000
3210000
3220000
3230000
3240000
3250000
3260000
3270000
3280000
3290000
3300000
3310000
3320000
3330000
3340000
3350000
3360000
3370000
3380000
3390000
3400000
3410000
3420000
3430000
3440000
3450000
3460000
3470000
3480000
3490000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

Count Features from NGS Reads

3500000
3510000
3520000
3530000
3540000
3550000
3560000
3570000
3580000
3590000
3600000
3610000
3620000
3630000
3640000
3650000
3660000
3670000
3680000
3690000
3700000
3710000
3720000
3730000
3740000
3750000
3760000
3770000
3780000
3790000
3800000
3810000
3820000
3830000
3840000
3850000
3860000
3870000
3880000
3890000
3900000
3910000
3920000
3930000

reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads
reads

processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...
processed ...

2-51

2 High-Throughput Sequence Analysis

3940000 reads processed ...
3950000 reads processed ...
3960000 reads processed ...
3970000 reads processed ...
Done.

See Also
BioMap | bowtie2 | bowtie2build | cuffgffread | cufflinks | featurecount

2-52

Sequence Analysis

Sequence analysis is the process you use to find information about a nucleotide or amino
acid sequence using computational methods. Common tasks in sequence analysis are
identifying genes, determining the similarity of two genes, determining the protein coded
by a gene, and determining the function of a gene by finding a similar gene in another
organism with a known function.

+ “Exploring a Nucleotide Sequence Using Command Line” on page 3-2

+ “Exploring a Nucleotide Sequence Using the Sequence Viewer App” on page 3-20

* “Explore a Protein Sequence Using the Sequence Viewer App” on page 3-35

* “Compare Sequences Using Sequence Alignment Algorithms” on page 3-40

* “View and Align Multiple Sequences” on page 3-58

3 Sequence Analysis

Exploring a Nucleotide Sequence Using Command Line

3-2

In this section...

“Overview of Example” on page 3-2

“Searching the Web for Sequence Information” on page 3-2
“Reading Sequence Information from the Web” on page 3-5
“Determining Nucleotide Composition” on page 3-6
“Determining Codon Composition” on page 3-10

“Open Reading Frames” on page 3-15

“Amino Acid Conversion and Composition” on page 3-17

Overview of Example

After sequencing a piece of DNA, one of the first tasks is to investigate the nucleotide
content in the sequence. Starting with a DNA sequence, this example uses sequence
statistics functions to determine mono-, di-, and trinucleotide content, and to locate open
reading frames.

Searching the Web for Sequence Information

The following procedure illustrates how to use the MATLAB Help browser to search the
Web for information. In this example you are interested in studying the human
mitochondrial genome. While many genes that code for mitochondrial proteins are found
in the cell nucleus, the mitochondrial has genes that code for proteins used to produce
energy.

First research information about the human mitochondria and find the nucleotide
sequence for the genome. Next, look at the nucleotide content for the entire sequence.
And finally, determine open reading frames and extract specific gene sequences.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB Command
Window, type

web('http://www.ncbi.nlm.nih.gov/")

A separate browser window opens with the home page for the NCBI Web site.

Exploring a Nucleotide Sequence Using Command Line

2 Search the NCBI Web site for information. For example, to search for the human
mitochondrion genome, from the Search list, select Genome , and in the Search list,
enter mitochondrion homo sapiens.

o i ™ ow TO [l
,_.-_-_:NCB| Resources /] How To [

% N C BJ Search | Genome =l

|mrtoc:hondnon homo sapiens Search [E#EEY

cynk L. EEhL
o -l SGenome

LT
PubMed Nu-;IE-:-tidE Protein Genome Structure OMIM PMC

SearchlGennme ;I far |m'rtoc:hondrion homo sapisns| Go | Clear | Save Search
r Limitz T Preview/Index T History T Clipboard T Detailz \I

Display |Summar3.' x| show |23 = |Sendtn =

b

All: 49

Items 1 - 20 of 45 Page ”1 of 3 Maxt
[T1: NC 003415 Links

Ancylostoma duodenale mitochondrion, complete genome
DMA; circular; Length: 13,721 nt

COrganelle: mitochondrion

Created: 2002/02/21

3 Select a result page. For example, click the link labeled NC_012920.

The MATLAB Help browser displays the NCBI page for the human mitochondrial
genome.

3-3

3 Sequence Analysis

250K

3 My NCBI
ushA _“_1! L:}\C; enome Sign In] [Reqister]

Protein Genome Structure OMIM PMC Journals

Search | Genome | for | Go | Clearl
r Limits T Preview/Index T History T Clipboard T Detailz]

Display IOverviel,\' ;I Show IZ: ;I I Sendto ;I

All: 1 \

Genome = Eukaryota > Homo sapiens mitochondrion, complete genome Links

Lineage: Eukaryota; Fungi/Metazoa group; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia: Chordata: Craniata; Vertebrata: Gnathostomata;
Teleostomi; Euteleostomi; Sarcopteryqii; Tetrapoda; Amniota; Mammalia: Theria; Eutheria; Euarchontoglires; Primates: Haplorrhini: Simiiformes; Catarrhini;
Hominoidea: Hominidae: Homininae: Homo: Homo sapiens

Genome Info: | Features: LT Links: Review Info:
homologs:
Refsed: Genes: 37 Genome Project Publications: [2]

MNC_012920

GenBank: Frotein .

101415 coding: 13 Refseq Status: PROVISIONAL
Length: Structural .

16,569 nt R4S 24 TaxPlot Seq.Status: Completed

olecular and Mitochondrial
G) University of California,

Sequencing center: Center for I
IMedicine and Genetics (

GC Content: FPseudo

5 .
g JETEEELITE University of California, Invine, Mitomap.org, USA Irvine
o, i -
;’S,Chm'”g' Others: 30 Completed: 2009/07/08
Topology: Contigs:
circular HNone
Malecule: Other genomes for
dsDNA species: 5683
Gene Classification based on COG functional categaries Search gene, GenelD or Iocus_tag:l Find Gene |
< > 1ssmint
1nt 5,511 nt N - - /
> > —)
> P, A
| ______RNROT g4 _____________RNR2 4 > BrE ~
4 Y

Click here for Sequence Viewer presentation (base sequence and aligned amino acids) of selected region

Display IOverviel,\' ;I Show IE: ;I I Send to ;I

3-4

Exploring a Nucleotide Sequence Using Command Line

Reading Sequence Information from the Web

The following procedure illustrates how to find a nucleotide sequence in a public
database and read the sequence information into the MATLAB environment. Many public
databases for nucleotide sequences are accessible from the Web. The MATLAB Command
Window provides an integrated environment for bringing sequence information into the
MATLAB environment.

The consensus sequence for the human mitochondrial genome has the GenBank accession
number NC_012920. Since the whole GenBank entry is quite large and you might only be
interested in the sequence, you can get just the sequence information.

1

Get sequence information from a Web database. For example, to retrieve sequence
information for the human mitochondrial genome, in the MATLAB Command Window,

type
mitochondria = getgenbank('NC 012920', 'SequenceOnly', true)

The getgenbank function retrieves the nucleotide sequence from the GenBank
database and creates a character array.

mitochondria =
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCAT
TTGGTATTTTCGTCTGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTG
GAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATT
CTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTACTA
AAGT .

If you don't have a Web connection, you can load the data from a MAT file included
with the Bioinformatics Toolbox software, using the command

load mitochondria

The load function loads the sequence mitochondria into the MATLAB Workspace.
Get information about the sequence. Type

whos mitochondria

Information about the size of the sequence displays in the MATLAB Command
Window.

Name Size Bytes C(lass Attributes

mitochondria 1x16569 33138 char

3 Sequence Analysis

3-6

Determining Nucleotide Composition

The following procedure illustrates how to determine the monomers and dimers, and then
visualize data in graphs and bar plots. Sections of a DNA sequence with a high percent of
A+T nucleotides usually indicate intergenic parts of the sequence, while low A+T and
higher G+C nucleotide percentages indicate possible genes. Many times high CG
dinucleotide content is located before a gene.

After you read a sequence into the MATLAB environment, you can use the sequence
statistics functions to determine if your sequence has the characteristics of a protein-
coding region. This procedure uses the human mitochondrial genome as an example. See
“Reading Sequence Information from the Web” on page 3-5.

1 Plot monomer densities and combined monomer densities in a graph. In the MATLAB
Command Window, type

ntdensity(mitochondria)

This graph shows that the genome is A+T rich.

Exploring a Nucleotide Sequence Using Command Line

Nucleotide density

01F

D 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A-T C-G density
0.7 T T T T T

N W\M
0.5+ W \1
. WWW

0.3

0 2000 4000 G000 8000 10000 12000 14000 16000 18000

Count the nucleotides using the basecount function.

basecount(mitochondria)

A list of nucleotide counts is shown for the 5'-3' strand.

ans
5124
5181
2169
4094

—on>x>l

Count the nucleotides in the reverse complement of a sequence using the
seqrcomplement function.

basecount(seqrcomplement (mitochondria))

3 Sequence Analysis

3-8

5

As expected, the nucleotide counts on the reverse complement strand are
complementary to the 5'-3' strand.

ans =
A: 4094
C: 2169
G: 5181
T: 5124

Use the function basecount with the chart option to visualize the nucleotide
distribution.

figure
basecount(mitochondria, 'chart’', 'pie');

A pie chart displays in the MATLAB Figure window.

Count the dimers in a sequence and display the information in a bar chart.

Exploring a Nucleotide Sequence Using Command Line

figure
dimercount(mitochondria, 'chart', 'bar')

ans

AA:
AC:
AG:
AT:
CA:
CC:
CG:
CT:
GA:
GC:
GG:
GT:
TA:
TC:
TG:
TT:

1604
1495
795
1230
1534
1771
435
1440
613
711
425
419
1373
1204
513
1004

3-9

3 Sequence Analysis

2000 _

1500 |

1000

200 |

First Base A

Second Base

Determining Codon Composition

The following procedure illustrates how to look at codons for the six reading frames.
Trinucleotides (codon) code for an amino acid, and there are 64 possible codons in a
nucleotide sequence. Knowing the percent of codons in your sequence can be helpful
when you are comparing with tables for expected codon usage.

After you read a sequence into the MATLAB environment, you can analyze the sequence
for codon composition. This procedure uses the human mitochondria genome as an
example. See “Reading Sequence Information from the Web” on page 3-5.

1 Count codons in a nucleotide sequence. In the MATLAB Command Window, type
codoncount(mitochondria)

The codon counts for the first reading frame displays.

3-10

Exploring a Nucleotide Sequence Using Command Line

AAA - 167 AAC - 171 AAG - 71 AAT - 130
ACA - 137 ACC - 191 ACG - 42 ACT - 153
AGA - 59 AGC - 87 AGG - 51 AGT - 54
ATA - 126 ATC - 131 ATG - 55 ATT - 113
CAA - 146 CAC - 145 CAG - 68 CAT - 148
CCA - 141 CCC - 205 CCG - 49 CCT - 173
CGA - 40 CGC - 54 CGG - 29 CGT - 27
CTA - 175 CTC - 142 TG - 74 CTT - 101
GAA - 67 GAC - 53 GAG - 49 GAT - 35
GCA - 81 GCC - 101 GCG - 16 GCT - 59
GGA - 36 GGC - 47 GGG - 23 GGT - 28
GTA - 43 GTC - 26 GTG - 18 GTT - 41
TAA - 157 TAC - 118 TAG - 94 TAT - 107
TCA - 125 TCC - 116 TCG - 37 TCT - 103
TGA - 064 TGC - 40 TGG - 29 TGT - 26
TTA - 96 TTC - 107 TG - 47 TTT - 78

Count the codons in all six reading frames and plot the results in heat maps.

for frame = 1:3
figure
subplot(2,1,1);
codoncount(mitochondria, 'frame', frame, 'figure',true,...
'geneticcode', 'Vertebrate Mitochondrial');
title(sprintf('Codons for frame %d',frame));
subplot(2,1,2);
codoncount(mitochondria, 'reverse',true, 'frame', frame, ...
'figure',true, 'geneticcode’', 'Vertebrate Mitochondrial');
title(sprintf('Codons for reverse frame %d',frame));
end

Heat maps display all 64 codons in the 6 reading frames.

3-11

3 Sequence Analysis

Codons for frame 1

AAA | AAC | ACA ACC | CAA | CAC [CCA CCC 200
150
100
50

Genetic Code: Verebrate Mitochondrial
Codons for reverse frame 1

200
150
100
50

GGG GGT | GIG | GTT J TGG P IGT | TTG | TTT

Genetic Code: Verebrate Mitochondrial

3-12

Exploring a Nucleotide Sequence Using Command Line

Codons for frame 2

200

150

100

Genetic Code: Verebrate Mitochondrial

Codons for reverse frame 2
200

150

100

50

GGG GGT | GTG GTT JTGG | TGT | TTG | TIT

Genetic Code: Verebrate Mitochondrial

3-13

3 Sequence Analysis

Codons for frame 3

200

AAR | AAC | ACA ACC | CAA | CAC | CCA CCC

150

100

50

Genetic Code: Vertebrate Mitochondrial

Codons for reverse frame 3

200

150

100

50

Genetic Code: Vertebrate Mitochondrial

3-14

Exploring a Nucleotide Sequence Using Command Line

Open Reading Frames

The following procedure illustrates how to locate the open reading frames using a specific
genetic code. Determining the protein-coding sequence for a eukaryotic gene can be a
difficult task because introns (noncoding sections) are mixed with exons. However,
prokaryotic genes generally do not have introns and mRNA sequences have the introns
removed. Identifying the start and stop codons for translation determines the protein-
coding section, or open reading frame (ORF), in a sequence. Once you know the ORF for a
gene or mRNA, you can translate a nucleotide sequence to its corresponding amino acid
sequence.

After you read a sequence into the MATLAB environment, you can analyze the sequence
for open reading frames. This procedure uses the human mitochondria genome as an
example. See “Reading Sequence Information from the Web” on page 3-5.

1 Display open reading frames (ORFs) in a nucleotide sequence. In the MATLAB
Command Window, type:

segshoworfs(mitochondria);

If you compare this output to the genes shown on the NCBI page for NC 012920,
there are fewer genes than expected. This is because vertebrate mitochondria use a
genetic code slightly different from the standard genetic code. For a list of genetic
codes, see the Genetic Code table in the aa2nt reference page.

2 Display ORFs using the Vertebrate Mitochondrial code.

orfs= seqshoworfs(mitochondria,...
'GeneticCode', 'Vertebrate Mitochondrial', ...
'alternativestart', true);

Notice that there are now two large ORFs on the third reading frame. One starts at
position 4470 and the other starts at 5904. These correspond to the genes ND2
(NADH dehydrogenase subunit 2 [Homo sapiens]) and COX1 (cytochrome c oxidase
subunit I) genes.

3 Find the corresponding stop codon. The start and stop positions for ORFs have the
same indices as the start positions in the fields Start and Stop.

ND2Start = 4470;
StartIndex = find(orfs(3).Start == ND2Start)
ND2Stop = orfs(3).Stop(StartIndex)

The stop position displays.

3-15

3 Sequence Analysis

3-16

ND2Stop =

5511
Using the sequence indices for the start and stop of the gene, extract the
subsequence from the sequence.

ND2Seq = mitochondria(ND2Start:ND2Stop)

The subsequence (protein-coding region) is stored in ND2Seq and displayed on the
screen.

attaatcccctggcccaacccgtcatctactctaccatctttgeaggcac
actcatcacagcgctaagctcgcactgattttttacctgagtaggectag
aaataaacatgctagcttttattccagttctaaccaaaaaaataaaccct
cgttccacagaagctgccatcaagtatttcctcacgcaagcaaccgceatc
cataatccttc .

Determine the codon distribution.
codoncount (ND2Seq)
The codon count shows a high amount of ACC, ATA, CTA, and ATC.

AAA - 10 AAC - 14 AAG - 2 AAT - ©
ACA - 11 ACC - 24 ACG - 3 ACT - 5
AGA - © AGC - 4 AGG - © AGT - 1
ATA - 23 ATC - 24 ATG - 1 ATT - 8
CAA - 8 CAC - 3 CAG - 2 CAT - 1
CCA - 4 CcC - 12 ccéG - 2 CCT - 5
CGA - © cGC - 3 CGG - 0O CGT - 1
CTA - 26 CTC - 18 CTG - 4 cTT - 7
GAA - 5 GAC - 0 GAG - 1 GAT - 0
GCA - 8 GCC - 7 GCG - 1 GCT - 4
GGA - 5 GGC - 7 GGG - © GGT - 1
GTA - 3 GTC - 2 GTG - © GTT - 3
TAA - 0O TAC - 8 TAG - © TAT - 2
TCA - 7 TCC - 11 TCGG - 1 TCT - 4
TGA - 10 TGC - © TGG - 1 TGT - ©
TTA - 8 1€ - 7 TG - 1 7T - 8

Look up the amino acids for codons ATA, CTA, ACC, and ATC.

"ATAY))
"CTAY))
"ACC'))
"ATC'))

aminolookup('code',nt2aa
aminolookup('code',nt2aa
aminolookup('code',nt2aa
aminolookup('code',nt2aa

_~ e~~~

Exploring a Nucleotide Sequence Using Command Line

The following displays:
Ile isoleucine
Leu leucine

Thr threonine
Ile isoleucine

Amino Acid Conversion and Composition

The following procedure illustrates how to extract the protein-coding sequence from a
gene sequence and convert it to the amino acid sequence for the protein. Determining the
relative amino acid composition of a protein will give you a characteristic profile for the
protein. Often, this profile is enough information to identify a protein. Using the amino
acid composition, atomic composition, and molecular weight, you can also search public
databases for similar proteins.

After you locate an open reading frame (ORF) in a gene, you can convert it to an amino
sequence and determine its amino acid composition. This procedure uses the human
mitochondria genome as an example. See “Open Reading Frames” on page 3-15.

1

Convert a nucleotide sequence to an amino acid sequence. In this example, only the
protein-coding sequence between the start and stop codons is converted.

ND2AASeq = nt2aa(ND2Seq, 'geneticcode’, ...
'Vertebrate Mitochondrial')

The sequence is converted using the Vertebrate Mitochondrial genetic code.
Because the property AlternativeStartCodons is set to 'true' by default, the
first codon att is converted to M instead of I.

MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIPVLTKKMNP
RSTEAAIKYFLTQATASMILLMATLFNNMLSGQWTMTNTTNQYSSLMIMM
AMAMKLGMAPFHFWVPEVTQGTPLTSGLLLLTWQKLAPISIMYQISPSLN
VSLLLTLSILSIMAGSWGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNM
TILNLTIYITILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLS
LGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYST
SITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL

Compare your conversion with the published conversion in the GenPept database.
ND2protein = getgenpept('YP 003024027', 'sequenceonly',true)

The getgenpept function retrieves the published conversion from the NCBI
database and reads it into the MATLAB Workspace.

3-17

3 Sequence Analysis

3 Count the amino acids in the protein sequence.

aacount (ND2AASeq, 'chart','bar')

A bar graph displays. Notice the high content for leucine, threonine and isoleucine,
and also notice the lack of cysteine and aspartic acid.

70

ARNDCQEGH I L KMFPSTWYV

4 Determine the atomic composition and molecular weight of the protein.

atomiccomp(ND2AASeq)
molweight (ND2AASeq)

The following displays in the MATLAB Workspace:
ans =

1818
1 2882
1 420
1 471
1 25

no=2xTo

3-18

Exploring a Nucleotide Sequence Using Command Line

ans =
3.8960e+004

If this sequence was unknown, you could use this information to identify the protein
by comparing it with the atomic composition of other proteins in a database.

3-19

3 Sequence Analysis

Exploring a Nucleotide Sequence Using the Sequence
Viewer App

3-20

In this section...

“Overview of the Sequence Viewer” on page 3-20

“Importing a Sequence into the Sequence Viewer” on page 3-20
“Viewing Nucleotide Sequence Information” on page 3-23
“Searching for Words” on page 3-27

“Exploring Open Reading Frames” on page 3-29

“Closing the Sequence Viewer” on page 3-34

Overview of the Sequence Viewer

The Sequence Viewer integrates many of the sequence functions in the Bioinformatics
Toolbox toolbox. Instead of entering commands in the MATLAB Command Window, you
can select and enter options using the app.

Importing a Sequence into the Sequence Viewer

The first step when analyzing a nucleotide or amino acid sequence is to import sequence
information into the MATLAB environment. The Sequence Viewer can connect to Web
databases such as NCBI and EMBL and read information into the MATLAB environment.

The following procedure illustrates how to retrieve sequence information from the NCBI
database on the Web. This example uses the GenBank accession number NM_000520,
which is the human gene HEXA that is associated with Tay-Sachs disease.

Note Data in public repositories is frequently curated and updated; therefore, the results
of this example might be slightly different when you use up-to-date sequences.

1 Inthe MATLAB Command Window, type

seqviewer

Alternatively, click Sequence Viewer on the Apps tab.

Exploring a Nucleotide Sequence Using the Sequence Viewer App

The Sequence Viewer opens without a sequence loaded. Notice that the panes to
the right and bottom are blank.

To retrieve a sequence from the NCBI database, select File > Download Sequence
from > NCBI.

The Download Sequence from NCBI dialog box opens.

-

Downlead Sequence from MNCEI EE_'
Enter Sequence Accession Mumber or Locus Mame
@ Mucleotide (7 Protein
Ok] ’ Cancel

In the Enter Sequence box, type an accession number for an NCBI database entry,
for example, NM_000520. Click the Nucleotide option button, and then click OK.

The MATLAB software accesses the NCBI database on the Web, loads nucleotide
sequence information for the accession number you entered, and calculates some
basic statistics.

3-21

3 Sequence Analysis

3-22

4\ Biclogical Sequence Viewer - NM_000520

File Edit Sequence Display Window Help

[& x

i @ e|

Line length: |60 | HOH 5@

Sequence View

MNM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.

1

4

N_M_UUUSZU: Homo sapiens| | Position: 2751 bp
ORF - H,,H,Hl|0H,,,IIHZF,,HHHISF,,,IIIIII4|DH,,H|H5|DHH,HH6|D
ull Translation 1 tcacatcaca acgacttgbg gotttaateoc TLoCOLLLLLE tgobtctgaa gttacttoad =
nnotated COS £1 cetggraagt cottbacchbe coogbaggoe Lggogagetyg CACCACAaaca LLOAAgALLE
-~ CD5 with Translatiol 121 accetagage catctgggad actttocttot coaggtogoe ctgogtocoto gooctococac
""" Complement Sequence 181 ceoogttette togagtoggy tCgagotgtot agttocatca cggocggoac ggccgoaggd
""" Reverse Complement 5 241 gtggecggtt atttactget ctactgggeoe cgtgaacagt ctggogagec gagocagttge
----- Features 301 cgacgeceogg cacaatcoge tgeacgtage aggagectea ggtocaggee ggaagtgaaa E
----- Comments 36l gygeagggtyg tgggtectee tggggtoegoa ggegocagage cgoctetggt cacgtgatte
421 geogataagt cacggygggcyg cogotcacct gaccagggtc tocacgtggoc agoccococteoco
481 gagaggdggag accagogggc catgacaage toccaggottt ggttttogct gotgotggog
541 geoagegttod caggacggyge gacggoccto TCggecchygge Cctfagaactt ooaaacoteoc
601 gaccagoget acgbocttha cocgaacaacr Cttoaatteoc agtacgatgt cagoetoggeoc —
a1 [P . 66l gogroagocog goetgotoadt cotogacgad gocttocage gotatcedgtga cotgottohe
721 gyttcoggygt cttggecceod tocttaccto acaggdadac Jgycatacact gUyadgaagaat
Base Count 78l gtgttggttg tetctgtagt cacacectgga tgtaaccage ttcocotacttt ggagtcagtg
i i~ 841 gagaattata cectgaccat aaatgatgac cagtgtttac tectetetga gactgtotgd
A: 593 21'63— 901 ggagetetoo gaggbetgga gacttttage cagettbgttt ggaaatetge tgagggcaca
C: 750 213?5 91 tteotttateca acaagactga gattgaggac tttecceget ttoctecacceg gyggettgetyg
G: 718 26'01_ 1021 ttggatacat ctcgoccatta cctgoccactec totagocatce tggacactet ggatgtcatg
T 6oz 5. 2% 108l gcgtacaata aattgaacgt gttccactgg catctggtag atgatcctte cttcocccatat
1141 gagagctteca cttttocaga Jgetecatgaga aaggggtect AcaacccLygt cacccacatc
1201 tacacagrac aggatgtgas JUAYCCATLT JaaTacgoac JgUctoc oy TCatcogtgtg
- 1261 cttgeagagt ttgacacteoo tggocacact ttgtoctyggy gaccaggtat coctggatta
4 m 3 ¢ (4 5.2
4.7 BP/Pixel l #, X2 Zoom in l l (=), X2 Zoom out]
Map View 1 1000 2000 2751
Sequence = l : l I
CDs !

(L1} [

Exploring a Nucleotide Sequence Using the Sequence Viewer App

Viewing Nucleotide Sequence Information

After you import a sequence into the Sequence Viewer app, you can read information
stored with the sequence, or you can view graphic representations for ORFs and CDSs.

1 In the left pane tree, click Comments. The right pane displays general information
about the sequence.

2 Now click Features. The right pane displays NCBI feature information, including
index numbers for a gene and any CDS sequences.

3 Click ORF to show the search results for ORFs in the six reading frames.

3-23

3 Sequence Analysis

-
4\ Biclogical Sequence Viewer - NM_000520

= | B i |

OR]

CD

Sequence

F

3

4

File Edit Sequence Display Window Help |?| b4
= ey i r .
KQAQ|..5|@|@.| Line length: 60 = EEHIIEIE@
Sequence View MNM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.
MM_000520: Home sapiens| | Position: Words found: 33 2751 bp
=-Sequence
10 z0 30 40 50 &0
Full Translation 1 tcacatcaca acgacttgbg gotttaateoc TLoCOLLLLLe tgottotgaa gttacttoad =
Annotated CDS r
“-C DS with Translatio 3 =
----- Complement Sequence :é‘ c
----- Reverse Complement S -2
----- Features 6l ecoctggocaagt cctttaccte cococgtaggeoe tggegagetyg catcacaaca ttocaagatte
----- Comments I%
-3
121 accctagage catctygggaa actttottot ccaggroogec ctgogtocte gectococac
+1
«[Lm r =
-1
Base Count -z
-3
e 593 21.6%
181 cecegttette teogagteggy tgagetgtet agtteocatea cggeoocggoac ggoccgoaggd
C: 750 27.3% +1
G: 716 26.0% i
T: 692 25.2% 'i-
= :5 :
241 gtggeoggtt atttactget ctactgggoe cgtgaacagt ctggoegagoes gagoeagtoge
+1
+z
-1
- -
-3 Ty
4 301 coacacccdd cacaatccde Cacacdtade addgadcctca JOCocadaocs doaadtoaad
4 m 2 4 L 4
4.7 BP/Pixel l #, X2 Zoom in l l (=), X2 Zoom out
Map View 1 1000 000 2751~

L1

3-24

Exploring a Nucleotide Sequence Using the Sequence Viewer App

4 Click Annotated CDS to show the protein coding part of a nucleotide sequence.

3-25

3 Sequence Analysis

4\ Biclogical Sequence Viewer - NM_000520

= | B 8

|1

File Edit Sequence

Display Window Help

[& x

i @ e|

Line length: .60 v

ERul=R=dn]

Sequence View

MNM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.

4

MNM_000520: Homo sapiens| |Position: 2751 bp
=-Sequence
10 Z0 30 40 50 &0
ORF _ AT T R R BT R
F””T'a“lat'“ 1 tcacatcaca acgacttgbg gotttaateoc TLoCOLLLLLE tgobtctgaa gttacttoad =
_ Annotated CD! £1 cetggraagt cottbacchbe coogbaggoe Lggogagetyg CACCACAaaca LLOAAgALLE
-~ CD5 with Translatiol 121 accetagage catctgggad actttocttot coaggtogoe ctgogtocoto gooctococac
""" Complement Sequence 181 ceoogttette togagtoggy tCgagotgtot agttocatca cggocggoac ggccgoaggd |
""" Reverse Complement 5 241 gtggecggtt atttactget ctactgggeoe cgtgaacagt ctggogagec gagocagttge I
----- Features 301 cgacgecegg cacaatccge tgecacgtage aggageocteoca ggtccaggee ggaagtgaaa
----- Comments 38l gggragggtg tgggtccteoo tggggtogoa ggogoagage cgoctotggt cacgtgatte
421 geccogataagt cacgggggcog cocgoctcacct gaccagggtec tcacgtggec agocccctoco
481 gagaggggag accagogggce catgacaage toccaggottt ggttttoget getgotggog
HEXA
541 gragogttog caggacggge gacggoccte tOgoCcctyge CLOAagAACtt CCAAaAacCLoc
< [am F HERN
E0l gaccageogot acgtoottta cocgaacaac tttcaattoo agtacgatgt cagotoggoc
Base Count HEXA
N 93 2168 - EEl geogrageocog gotgetcagt cotcgacgag gocttocage gotatcgbga coctgotttte
H LBy 5
C: 750 27.3% HEXA
- - 26. 04| 721 ggttcegggt cttggecceg tcottaccte acagggaaac ggcatacact ggagaagaat
: .05
T: 632 z5.2% HEX A
781 gtgttggttg totoctgtagt cacacctgga tgtaaccage ttococtacttt ggagtcagtg
HEXA
841 gagaattata CCoCLyACCAT aaatgatgac Cagtgtttac LoCtCetobtga gactgrotod
2 HEXA
4 n 3 4 ol =
4.7 BP/Pixel l), X2 Zoom in l l (=), X2 Zoom out
Map View 1 1000 2000 2751 *
| | |
Sequence =
ORF
chs

(L1}

3-26

Exploring a Nucleotide Sequence Using the Sequence Viewer App

Searching for Words

You can also search for characteristic words or sequence patterns using regular
expressions. You can enter the IUB/IUPAC nucleotide and amino acid symbols that are
automatically converted to corresponding nucleotides and amino acids accordingly. For
details about how symbols are interpreted, see the Nucleotide Conversion and Amino
Acid Conversion tables of seq2regexp. For instance, if you search for the word ' TAR'
with the Regular Expression box checked, the app highlights all the occurrences of
'"TAA' and 'TAG' in the sequence since R = [AG].

1 Select Sequence > Find Word.

2 In the Find Word dialog box, type a sequence word or pattern, for example, atg, and
then click Find.

Find Word % |

Enter a Word:

atg

Regular Expressicn

| Find || Cancel |

The Sequence Viewer searches and displays the location of the selected word.

3-27

3 Sequence Analysis

-
4\ Biclogical Sequence Viewer - NM_000520

= | B i |

File Edit Sequence

Display Window Help

[& x

R o e

Line length: .60 v

ERul=R=dn]

Sequence View

MNM_000520: Homo sapiens hexosaminidase subunit alpha (HEXA), transcript variant 2, mRMA.

MIM_000520: Homo sapiens| | Position: Words found: 33 2751 bp
=-Sequence
10 z0 30 40 =] &0
ORF _ AT T R R BT R
F””T'E”SIEt'D 1 tcacatcaca acgacttgbg gotttaateoc TLoCOLLLLLE tgobtctgaa gttacttoad =
_ Annotated CD! £1 cetggraagt cottbacchbe coogbaggoe Lggogagetyg CACCACAaaca LLOAAgALLE
-~ CD5 with Translatio 121 accetagage catctgggad actttocttot coaggtogoe ctgogtocoto gooctococac
""" Complement Sequence 181 ceoogttette togagtoggy tCgagotgtot agttocatca cggocggoac ggccgoaggd
""" Reverse Complement 5 241 gtggecggtt atttactget ctactgggeoe cgtgaacagt ctggogagec gagocagttge
----- Features 301 cgacgecccgg cacaatccge tgeacgtage aggageoctca ggtocaggec ggaagtgaaa 3
----- Comments 38l gggragggtg tgggtccteoo tggggtogoa ggogoagage cgoctotggt cacgtgatte
421 geccogataagt cacgggggcog cocgoctcacct gaccagggtec tcacgtggec agocccctoco
481 gagaggggag accagogggce catgacaagec toccaggottt ggttttoget getgotggog
HEXA .
541 gragogttog caggacggge gacggoccte tOgoCcctyge CLOAagAACtt CCAAaAacCLoc
< [am b HEXA
E0l gaccageogot acgtoottta cocgaacaac tttcaattoo agtacgatgt cagotoggoc
Base Count HEXA
N 93 2168 - EEl geogrageocog gotgetcagt cotcgacgag gocttocage gotatcgbga coctgotttte
H LBy 5
C: 750 27.3% HEXA
- - 6.0 721 ggttcegggt cttggecceg tcottaccte acagggaaac ggcatacact ggagaagaat
: .05
T: 63z 25.2% g
= 781 gtgttggtbtg tctctgtagt cacacctgga tgtaaccage ttoctacttt ggagtbcagtg
HEXA
841 gagaattata Ccoctgaccat aaatgatgac cagtgtttac Loctetotga gactgrotod
- HEXA
901 ggagototoe gaggrotgga gacttttage cagettgttt ggaaatctge tgagggcaca
HEXA
9l ttctttatca acaagactga gattgaggac tttecceget ttoctcaccg gggottgotg
4 | i | 3 4 . [
4.7 BP/Pixel l @‘lXZZoomin l l aXZZoomout
Map View 1 1000 000 2751~
| | | |
Sequence
b b Feobe e b
ORF
= - = 1
i =1 amm—— 4
e = —f i =
chs

4

L1

3-28

Exploring a Nucleotide Sequence Using the Sequence Viewer App

Clear the display by clicking the Clear Word Selection button

Exploring Open Reading Frames

|2

| on the toolbar.

The following procedure illustrates how to identify the protein coding part of a nucleotide
sequence and copy it into a new view. Identifying coding sections of a nucleotide
sequence is a common bioinformatics task. After locating the coding part of a sequence,
you can copy it to a new view, translate it to an amino acid sequence, and continue with

your analysis.

1 In the left pane, click ORF.

The Sequence Viewer displays the ORFs for the six reading frames in the lower-
right pane. Hover the cursor over a frame to display information about it.

4.7 BP/Pixel [# X2 Zoom in l [(=}, X2 Zoom out]

Map View 1 1000 2751 *
| | !
Sequence |~
e—— >—[:§—>H- = P E
ORF = <4 «|Frame: 1, StartBP: 502, EndBP: 2089, Length: 1588 |
e — Cu—— +}
ate— = — =] 3
CDS i

1

4 L

2 Click the longest ORF on reading frame 2.

The ORF is highlighted to indicate the part of the sequence that is selected.

3-29

3 Sequence Analysis

|| 4.7 BP/Pixel ’ #) X2 Zoom in] [(=), %2 Zoom out
Map View 1 1000 2000 2751
Sequence ~| o ———")R 1 R
i s -t bt =t ! o |—:~ I:\}

ORF = i ~ < ey

] — =l <

L —f —
cos il
|| 4 1 | »

3 Right-click the selected ORF and then select Export to Workspace. In the Export to
MATLAB Workspace dialog box, type a variable name, for example,
NM_000520_ORF_2, then click Export.

Export to MATLAE Workspace

Enter a Variable Mame:

MM_000520_0ORF_2

Export

||

Cancel

L,

A

The NM_000520_ORF _2 variable is added to the MATLAB Workspace.

4 Select File > Import from Workspace. Type the name of a variable with an
exported ORF, for example, NM_000520_ORF_2, and then click Import.

The Sequence Viewer adds a tab at the bottom for the new sequence while leaving

the original sequence open.

3-30

Exploring a Nucleotide Sequence Using the Sequence Viewer App

4\ Biclogical Sequence Viewer - NM_000520_ORF_2 o= = |
File Edit Sequence Display Window Help | Ao
- A - -
1Q§l|..a@|'|@_.| Line length: 60 =« EEHIIEIE@
Sequence View NM_000520_0ORF_2
N:MUUUSZU_ORF_Z Position: 232 bp
& S
~~ORF 10 z0 30 40 50 &0
\FU”Translatlon IIIIIIIIIIIIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIIII|
Complement Sequence 1 atgatgacca gtgtttactc ctotoctgaga ctgbtctgggy agotoctococga ggtoctggaga T
--Reverse Complement § 6l cttttagcoca gottgtttgy aaatotgoty agggoacatt Ctttatcaac aagactgaga
Features 12l ttgaggactt COCCCOPotth CoLcacogyy gottgotgtt ggatacatot cgocattace
‘Comments 18l tygcoactcocteo tagcatcctyg gacactotgy atgtcatgyec gtacaataaa th
F 10 F
Base Count
e 45 20.7% %
C: 60 25.9% |
G: 54 z3.3% |0
T: 70 30.2%
4 1n } P P
0.4 BP/Pixel | @ x2Zoomin | | B} %2Zoomout |
Map View 1 100 00 zzz *
| | | |
Sequence —
4 I b
© Untitled | NM_000520 [rum_000520_ORF 2 x|

3-31

3 Sequence Analysis

5 In the left pane, click Full Translation. Select Display > Amino Acid Residue
Display > One Letter Code.

The Sequence Viewer displays the amino acid sequence below the nucleotide
sequence.

3-32

Exploring a Nucleotide Sequence Using the Sequence Viewer App

4\ Biclogical Sequence Viewer - NM_000520_ORF_2 o= = |
File Edit Sequence Display Window Help | Ao
| A " ,

1Q§l|..a@|@|@.| Line length: 60 =« EEHIIEIE@
Sequence View NM_000520_0ORF_2

NM_000520_ORF_2 Position: 232 bp
-Sequence

. ORF 10 zn 30 40 &0 &0

EB®Full Translatio v b e v o b v |
Fs

omplement Sequence 1l atgatgacca gbgttbactc chbototgaga ctgbctbyggygy agoctctocga ggtctggaga
everse Complement § n M T 5 ¥V YT 5 5 L R L 3 G E L &5 E ¥ W R
eatures ® % P v F T P L " D C L i 4% P R 5 G D
I o 0 C L L L 5 E T ¥ W G 4 L R G L E
6l cttttagoca gottghttygy saatctgoctd aggygcacatt ctttatcaac aagactygaga
L L A 5 L F G N L L E & H 5 L 85 T E L R
F + P L C L E I ¢© * G H I L T 0 oD % D
T F 5 10 L v u E 5 A E &6 T F F I 1 E T E
121 ttgaggactt tcccogottt cotbcacogygy gotbtgotbgth ggatacatct cgocattace
L B T F P & F L T G A C C W I H L A I T
TG L 5 P L 5 35 P G L & ¥ G T I 5 P L F
4 1 b I E L F P R F P H E G L L L D T & E H ¥
181 tgccactoctec tCagycatcctCd Jacactotgy atgtcatgyc gtacaataaa to

------ Comments

Base Count
ase boun c H $ L A S W T LW MM 5 W E T I K

Ar 48 z0.7% 4 4T L + H P G HE § 6 ©C H GG ¥ 0 + I

C: 60 25.9% | L P L 5§ % I L D TJL D ¥ H & Y N E

G: 54 z23.3% |

T: 70 30.z%

4 L 2 4 r T
0.4 BP/Pixel | @ x2Zoomin | | B} %2Zoomout |

Map View 1 100 00 zzz *

Sequence —_—

4 T 3

Untitled % | NM_000520 x [[NM_000520_ORF 2 =]

3-33

3 Sequence Analysis

Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following syntax:

seqviewer('close')

3-34

Explore a Protein Sequence Using the Sequence Viewer App

Explore a Protein Sequence Using the Sequence Viewer

App

In this section...

“Overview of the Sequence Viewer” on page 3-35
“Viewing Amino Acid Sequence Statistics” on page 3-35
“Closing the Sequence Viewer” on page 3-39

“References” on page 3-39

Overview of the Sequence Viewer

The Sequence Viewer integrates many of the sequence functions in the Bioinformatics
Toolbox toolbox. Instead of entering commands in the MATLAB Command Window, you
can select and enter options using the app.

Viewing Amino Acid Sequence Statistics

The following procedure illustrates how to view an amino acid sequence for an ORF
located in a nucleotide sequence. You can import your own amino acid sequence, or you
can get a protein sequence from the GenBank database. This example uses the GenBank
accession number NP 000511.1, which is the alpha subunit for a human enzyme
associated with Tay-Sachs disease.

1 Select File > Download Sequence from > NCBI.

The Download Sequence from NCBI dialog box opens.

2 In the Enter Sequence box, type an accession number for an NCBI database entry,
for example, NP_000511.1. Click the Protein option button, and then click OK.

3-35

3 Sequence Analysis

Downlead Sequence from MNCEI ﬁ

Enter Sequence Accession Number or Locus Mame

MP_000511.1

) Muclectide @ 'F'r-:uteirg

Ok] ’ Cancel

L &

The Sequence Viewer accesses the NCBI database on the Web and loads amino acid
sequence information for the accession number you entered.

3-36

Explore a Protein Sequence Using the Sequence Viewer App

4\ Biological Sequence Viewer - NP_000511 SRECE X
File Edit Sequence Display Window Help ax
XQI\Q ﬁ‘;ﬁ LAk Line length: |60 - EEEDEIE@
Sequence View NP_000511: hexosaminidase A preproprotein [Homo sapiens]
NP_000511: hexosaminidas ot 520 aa
g)
i~Features 10 20 30 40 50 &0
LComments || e | I [| I [| I |
1 mtssrlwfsl llaaafagra talwpwpgnf gtsdgryvly pnnfqfqydv ssaagpgosy e
61 ldeafgryrd llEgsgswpr pyltghrhtl eknvlvwswy tpgonglptl esvenytlti
121 nddgelllse tvwgalrgle tfsglwwksa egoffinkre iedfprfphr gllldotsrhy
181 lplssildtl dvmaynklnv fhwhlvddps fpyesftfpe lnrkgsynpv thiytagdvk
241 evieyarlrg irvlaefdep ghtlswgpgl pgllepcysg sepsgtfgpy npslnntyef
301 mstfflevss vipdfylhlg gdevdftowk snpeigdfnr kkgfgedflkyg lesfyigtll
361 divssygkgy wvwgevidnk vkigpdtiig wwredipvny mkelelvtka gfrallsapw
421 ylnrisygpd wkdfyvvepl afegtpegka lviggeacnw geywdntnlv prlwpragawv
481 aerlwsnklt sdltfayerl shfrecellrr gvgagplnvyg foegefegt
« [am v

Amino Acid Count

A 26 4.9%

R 25 4.9% E|

wooz2 42

D27 5.l

C: 8 1.5%

o2z 4z

E: 36 6.8% il

T v e e
0.912068924275332 AA/Pixel [®2Zoomin | [& X2Zoomout |

Map View 1 100 z00 200 400 500 529 4

Sequence -

|4 .] »

Untitled = [NP_000511 x

Select Display > Amino Acid Color Scheme, and then select Charge, Function,
Hydrophobicity, Structure, or Taylor. For example, select Function.

The display colors change to highlight charge information about the amino acid
residues. The following table shows color legends for the amino acid color schemes.

3-37

3 Sequence Analysis

3-38

Amino Acid Count

4\ Biclogical Sequence Viewer - NP_000511 |‘:'] = ‘
File Edit Sequence Display Window Help ax
:Q]Q ﬁ‘;ﬁ LAk Line length: |60 - EEEDEIE@
Sequence View NP_000511: hexosaminidase A preproprotein [Homo sapiens]
NP_000511: hexosaminidase ot 520 aa
i Features 10 20 30 40 50 &0
L Comments e b v b b b b |
1 mtssrlwfsl llaaafagra talwpwpgnf grsdgryvly pnnfqfqydvy ssaagpoosy e
61 ldeafgryrd llEgsgswpr pyltghrhtl eknvlvwswy tpgonglptl esvenytltd
121 nddgeclllse tywgalrgle tfsglwwksa egtffinkte iedfprfphr gllldotsrhy
181 lplssildtl dvmaynklnv fhwhlvddps fpyesftfpe lnrkgsynpw thiytagdvk
24l ewvieyarlry irvlaefdop ghtlswogpol pollepcysg sepsgtfopwv npslontyef
301 mstfflevss wipdfylhlyg gdevdftowk snpeigdfnr kkgfgedfky lesfyigtll
361 divssvokogy wywgevidnk vkigpdtiig wwredipvny mkelelvtka gfrallsapw
421 ylnrisygpd wkdfyvvepl afegtpegka lviggeacnw geywdntnlv prlwpragawv
481 aerlwsnklt sdltfaverl shfrcellrr gvgagplnwg foegefegt
« [v

Rz 49% 4

R 25 4.9% E|

wooz2 42

D27 5.l

C: 8 1.5%

o2z 4z

E: 36 6.8% il

C P T | ol

0.912068924275332 AA/Pixel [®2Zoomin | [& X2Zoomout |

Map View 1 100 z00 200 400 500 529 4
I I | I | [

Sequence s

e I o eeeeess—————————————

=[]

i] »

Untitled = [NP_000511 x

Amino Acid Color Scheme

Color Legend

Charge

¢ Acidic — Red
* Basic — Light Blue
e Neutral — Black

Function

* Acidic — Red

* Basic — Light Blue

* Hydropobic, nonpolar — Black
* Polar, uncharged — Green

Hydrophobicity

* Hydrophilic — Light Blue
* Hydrophobic — Black

Explore a Protein Sequence Using the Sequence Viewer App

Amino Acid Color Scheme Color Legend

Structure * Ambivalent — Dark Green
* External — Light Blue
* Internal — Orange

Taylor Each amino acid is assigned its own color, based
on the colors proposed by W.R. Taylor on page 3-
39.

Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following syntax:

seqviewer('close')

References

[1] Taylor, W.R. (1997). Residual colours: a proposal for aminochromography. Protein
Engineering 10, 7, 743-746.

3-39

3 Sequence Analysis

Compare Sequences Using Sequence Alignment
Algorithms

3-40

In this section...

“Overview of Example” on page 3-40

“Find a Model Organism to Study” on page 3-40

“Retrieve Sequence Information from a Public Database” on page 3-42
“Search a Public Database for Related Genes” on page 3-44

“Locate Protein Coding Sequences” on page 3-46

“Compare Amino Acid Sequences” on page 3-48

Overview of Example

Determining the similarity between two sequences is a common task in computational
biology. Starting with a nucleotide sequence for a human gene, this example uses
alignment algorithms to locate and verify a corresponding gene in a model organism.

Find a Model Organism to Study

In this example, you are interested in studying Tay-Sachs disease. Tay-Sachs is an
autosomal recessive disease caused by the absence of the enzyme beta-hexosaminidase A
(Hex A). This enzyme is responsible for the breakdown of gangliosides (GM2) in brain and
nerve cells.

First, research information about Tay-Sachs and the enzyme that is associated with this
disease, then find the nucleotide sequence for the human gene that codes for the enzyme,
and finally find a corresponding gene in another organism to use as a model for study.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB Command
window, type

web('http://www.ncbi.nlm.nih.gov/books/NBK22250/")

The MATLAB Help browser opens with the Tay-Sachs disease page in the Genes and
Diseases section of the NCBI web site. This section provides a comprehensive
introduction to medical genetics. In particular, this page contains an introduction and

Compare Sequences Using Sequence Alignment Algorithms

pictorial representation of the enzyme Hex A and its role in the metabolism of the
lipid GM2 ganglioside.

‘ o c | Qé | “ | Lecation: | http://www.nchinlm.nih.gov/books/NBK22250

S NCBl Resgurces ™ How To @ Sign in to NCBI
Bookshelf
ThisBook + |
Limits ~ Advanced Help
Contents Print View < Prev Next=| [i ; ::' Genes and Disease [Internet].

National Center for
Biotechnology Information
(us).

Tay-Sachs disease | | Show details

Bookshelf ID: NBK22250

B“ﬁJS'.?r’.%’ﬁEus Table of Contents Page | Cite this Page

é Download —

' POF version of this page (261K

Gz
/;,.,amivzix
&a Gene sequence =
Genome view see gene locations

Entrez Gene collection of gene-related information
KEY BlLink related sequences in different organisms
Gn2‘|:§> }HEXA

Model for Gy ganglioside metabolism. The literature =
::?;i:gx;::‘y::::::n;fe::::::::ida“ Research articles online full text
:g::::m:maen,:eedm?:ﬂr::’n:fﬂi_amg Books online books section
ﬁ:ﬂgﬁﬂr:;::r;m:':‘,l,s;::u:il::ug' : OMIM catalog of human genes and disorders

Sachs disease, the alpha subunit of
hexesaminidase malfunclions, leading to a
toxic build-up of the Gz ganglioside in the
lysosyme. [Adapted from: Chavany, C. and
Jendoubi, M. (1998) Mol. Med. Today, 4: 158

GeneReviews a medical genetics resource

166, with perméssion] Websites =
Tay-Sachs disease, a heritable metabolic disorder commonly associated with Ashkenazi Jews, has also been Fact Sheet from Mational Institute of Neurological

found in the French Canadians of Southeastern Quebec, the Cajuns of Southwest Louisiana, and other Disorders and Stroke

populations throughout the world. The severity of expression and the age at onset of Tay-Sachs varies from NTSAD NMational Tay-Sachs and Allied Diseases
infantile and juvenile forms that exhibit paralysis. dementia, blindness and early death to a chronic adult form Association

that exhibits neuron dysfunction and psychosis.
2 After completing your research, you have concluded the following:
The gene HEXA codes for the alpha subunit of the dimer enzyme hexosaminidase A
(Hex A), while the gene HEXB codes for the beta subunit of the enzyme. A third gene,

GM2A, codes for the activator protein GM2. However, it is a mutation in the gene
HEXA that causes Tay-Sachs.

3-41

3 Sequence Analysis

3-42

Retrieve Sequence Information from a Public Database

The following procedure illustrates how to find the nucleotide sequence for a human gene
in a public database and read the sequence information into the MATLAB environment.
Many public databases for nucleotide sequences (for example, GenBank, EMBL-EBI) are
accessible from the Web. The MATLAB Command Window with the MATLAB Help
browser provide an integrated environment for searching the Web and bringing sequence
information into the MATLAB environment.

After you locate a sequence, you need to move the sequence data into the MATLAB
Workspace.

1

Open the MATLAB Help browser to the NCBI Web site. In the MATLAB Command
Widow, type

web('http://www.ncbi.nlm.nih.gov/")

The MATLAB Help browser window opens with the NCBI home page.

Search for the gene you are interested in studying. For example, from the Search
list, select Nucleotide, and in the for box enter Tay-Sachs.

= p p
3 NCBI Rasources ™ How To &

Nucleotide Nucleotide + |Tay-Sachs

Save search Limits Advanced

The search returns entries for the genes that code the alpha and beta subunits of the
enzyme hexosaminidase A (Hex A), and the gene that codes the activator enzyme.
The NCBI reference for the human gene HEXA has accession number NM_000520.

Compare Sequences Using Sequence Alignment Algorithms

Nucleotide Nucleotide + |Tay-Sachs |
Save search Limits Advanced
Display Settings: [~ Summary, 20 per page, Sorted by Default order Send to:

@ Found 28006 nuclectide sequences. MNucleotide (60) GSS (27946)

Results: 1 to 20 of 60 Page 1 | of3 [Next>| Last=

=l HEXA {HEXA4bpDeltass mutation, exon 11} [human, Tay-Sachs disease patient, mRNA Partial Mutant, 84 ni]
1 84 bp linear mRNA

Accession: STE9841 GL 912781

GenBank FASTA Graphics

[F] HEXA {HEXAdeltass mutation. exon 11} [numan, Tay-Sachs disease patient, mRNA Partial Mutant, 80 nt]
2 80 bp linear MRNA

Accession: S76982.1 Gl 912780
GenBank FASTA Graphics

7] HEXA {HEXA4bp mutation, exon 11} [numan, Tay-Sachs disease patient, mRNA Partial Mutant, 84 nt]
3 84 bp linear mRNA

Accession: ST7043.1 GL 2779
GenBank FASTA Graphics

7] HEXA {HEXA4bpDeltaA mutation, exon 11} [numan, Tay-Sachs disease patient, mRNA Partial Mutant, 78 nf]
4 78 bp linear mRNA

Accession: S76980.1 GL 912777
GenBank FASTA Graphics

[F] Human beta-hexosaminidase A alpha-chain (with the classic form Tay-Sachs deletion) gene. partial cds
5 351 bp linear DNA

Accession: JO2820.1 GI: 184482
GenBank FASTA Graphics Related Sequences

[F] Homo sapiens hexosaminidase A (alpha polypeptide) (HEXA), mRNA
6. 2.437 bp linear mRNA

Accession: NM_000520.4 Gl 189181665
GenBank FASTA Graphics Related Sequences

3 Get sequence data into the MATLAB environment. For example, to get sequence
information for the human gene HEXA, type

3-43

3 Sequence Analysis

3-44

humanHEXA = getgenbank('NM 000520")

Note Blank spaces in GenBank accession numbers use the underline character.
Entering 'NM 00520' returns the wrong entry.

The human gene is loaded into the MATLAB Workspace as a structure.
humanHEXA =

LocusName: 'NM _000520'
LocusSequenceLength: '2255'
LocusNumberofStrands: *''
LocusTopology: 'linear'’
LocusMoleculeType: 'mRNA'
LocusGenBankDivision: 'PRI'
LocusModificationDate: '13-AUG-2006'
Definition: 'Homo sapiens hexosaminidase A (alpha polypeptide) (HEXA), mRNA.'
Accession: 'NM _000520'
Version: 'NM 000520.2'
GI: '13128865'
Project: [1]
Keywords: []
Segment: []
Source: 'Homo sapiens (human)'
SourceOrganism: [4x65 char]
Reference: {1x58 cell}
Comment: [15x67 char]
Features: [74x74 char]
CDS: [1x1 struct]
Sequence: [1x2255 char]
SearchURL: [1x108 char]
RetrieveURL: [1x97 char]

Search a Public Database for Related Genes

The following procedure illustrates how to find the nucleotide sequence for a mouse gene
related to a human gene, and read the sequence information into the MATLAB
environment. The sequence and function of many genes is conserved during the evolution
of species through homologous genes. Homologous genes are genes that have a common
ancestor and similar sequences. One goal of searching a public database is to find similar
genes. If you are able to locate a sequence in a database that is similar to your unknown
gene or protein, it is likely that the function and characteristics of the known and
unknown genes are the same.

After finding the nucleotide sequence for a human gene, you can do a BLAST search or
search in the genome of another organism for the corresponding gene. This procedure
uses the mouse genome as an example.

Compare Sequences Using Sequence Alignment Algorithms

1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB Command

window, type

web('http://www.ncbi.nlm.nih.gov")

2 Search the nucleotide database for the gene or protein you are interested in
studying. For example, from the Search list, select Nucleotide, and in the for box

enter hexosaminidase A.

The search returns entries for the mouse and human genomes. The NCBI reference
for the mouse gene HEXA has accession number AKO80777.

Mus musculus 9.5 days embryo parthenogenote cDNA, RIKEN full-length enriched library, clone:B130019N09

147 Product-hexosaminidase A, full insert sequence

1,839 bp linear mRNA
Accession: [TOEDNIEE. 1 Gl 26348756
GenBank FASTA Graphics

Related Sequences

3 Get sequence information for the mouse gene into the MATLAB environment. Type

mouseHEXA = getgenbank('AKO80777"')

The mouse gene sequence is loaded into the MATLAB Workspace as a structure.

mouseHEXA =

LocusName:
LocusSequencelLength:
LocusNumberofStrands:
LocusTopology:
LocusMoleculeType:
LocusGenBankDivision:
LocusModificationDate:
Definition:
Accession:

Version:

GI:

Project:

Keywords:

Segment:

Source:
SourceOrganism:
Reference:

Comment:

'AKO80777'

'1839'

'linear’

"mRNA'

'"HTC'

'02-SEP-2005"
[1x150 char]
'AKO80777'
'AK080777.1"
'26348756'

[1

"HTC; CAP trapper.'
[1

'Mus musculus
[4x65 char]
{1x8 cell}
[8x66 char]

(house mouse)'

3-45

3 Sequence Analysis

3-46

Features: [33x74 char]
CDS: [1x1 struct]
Sequence: [1x1839 char]
SearchURL: [1x107 char]
RetrieveURL: [1x97 char]

Locate Protein Coding Sequences

The following procedure illustrates how to convert a sequence from nucleotides to amino
acids and identify the open reading frames. A nucleotide sequence includes regulatory
sequences before and after the protein coding section. By analyzing this sequence, you
can determine the nucleotides that code for the amino acids in the final protein.

After you have a list of genes you are interested in studying, you can determine the
protein coding sequences. This procedure uses the human gene HEXA and mouse gene
HEXA as an example.

1 Ifyou did not retrieve gene data from the Web, you can load example data from a
MATile included with the Bioinformatics Toolbox software. In the MATLAB
Command window, type

load hexosaminidase

The structures humanHEXA and mouseHEXA load into the MATLAB Workspace.
2 Locate open reading frames (ORFs) in the human gene. For example, for the human
gene HEXA, type

humanORFs = seqshoworfs(humanHEXA.Sequence)

seqshoworfs creates the output structure humanORFs. This structure contains the
position of the start and stop codons for all open reading frames (ORFs) on each
reading frame.

humanORFs =
1x3 struct array with fields:

Start
Stop

The Help browser opens displaying the three reading frames with the ORFs colored
blue, red, and green. Notice that the longest ORF is in the first reading frame.

Compare Sequences Using Sequence Alignment Algorithms

Frame 1

000001 agttgcococgacgoococggocacaatococgotgcacgtagocaggagoctcaggtoccaggococggaagtga
000065 aagggcagggtgtgggtococtoctggggtogocaggocgcagagoocgoctotggtcacgtgattoge
000129 cgataagtcacgggggocgocogoctcacctgaccagggtoctcacgtggoccagoocooctococgagagy
0001383 ggagaccagcocgggccatgacaagotocaggotttggttttogotgetgotggoggoagogttog
000257 caggacgggogacggocctotggoocotggocteoagaacttocaaacotoogacocagegotacgt
000321 occtttacocogaacaactttoaattocagtacgatgtoagetoggocgogoagoooggetgotoa
000385 gtooctogacgaggootteocagogetatogtgacotgottttoggtteoogggtottggoooogte
000449 octtacctoacagggaaacggeoatacactggagaagaatgtgttggttgtoteotgtagtoacaco
000513 tggatgtaaccagottoctactttggagtoagtggagaattataccotgaccataaatgatgac
000577 cagtgtttactoctototgagactgtotggggagetotoeogaggtetggagacttttagooage
000641 ttgtttggaaatotgotgagggeoacattetttatoaacaagactgagattgaggactttooecog
000705 otttoctoacoggggottgotgttggatacatotegocattacotgocactototageoatootg
000769 gacactetggatgteoatggogtacaataaattgaacgtgttocactggoatotggtagatgato
000833 ottoottoocoatatgagagottoacttttocagagetoatgagaaaggggtoctacaacootgt
000897 cacocacatotacacagoacaggatgtgaaggaggteoattgaatacgoacggotooggggtato
000961 ocgtgtgettgeoagagtttgacacteootggocacactttgtoctggggaccaggtatocotggat
001025 tactgactoottgotactotgggtetgagoocototggoacotttggaccagtgaatoococagtot
001089 caataatacotatgagtteoatgageoacattottottagaagtoageototgtottooccagatttt
001153 tatotteatottggaggagatgaggttgattteoaceotgotggaagteocaacococagagatooagg
001217 actttatgaggaagaaaggottoggtgaggacttoaagoagotggagtoottotacatocagac
001281 gotgotggacategtotettottatggoaagggotatgtggtgtggeoaggaggtgtttgataat
001345 aaagtaaagattoagoocagacacaatoatacaggtgtggegagaggatattocagtgaactata
001409 tgaaggagotggaactggtoaccaaggooggottoogggecottotetotgoocoootggtacot
001473 gaacogtatatoctatggoootgactggaaggatttotacatagtggaaccootggeoatttgaa
001537 ggtacceooctgagoagaaggototggtgattggtggagaggettgtatgtggggagaatatgtgg
001601 acaacacaaacctggtoocooaggetotggoococagagoaggggotgttgoocgaaaggetgtggag
001665 caacaagttgacatotgacotgacatttgoctatgaacgtttgtoacacttoogotgtgaattg
001729 octgaggegaggtgtocaggoocaacooctoaatgtaggottotgtgagoaggagtttgaacaga
0017393 ocotgagocococcaggocaccgagyjagggtgotggoctgtaggtgaatggtagtggagocaggottoca
001857 octgeoateootggocaggggacggagoococcttgootteogtgeococottgeootgegtgooccetgtget
0015821 tggagagaaaggggoocggtgotggogotegoattoaataaagagtaatgtggoatttttotata
001885 ataaacatggattacotgtgtttaaaaaaaaaagtgtgaatggegttagggtaagggeoacagoo
002049 aggotggagteoagtgtotgooeocotgaggteottttaagttgagggotgggaatgaaacotatagoe
002113 otttgtgotgtteotgoottgootgtgagetatgtocactocococtoccactoctgaccatattoca
002177 gacacctgccoctaatcoctocagocctgotcacttcactbotgoattatatctccaaggogttggta
002241 tatggaaaaagatgtaggggottggaggtgtteotggacagtggggagggotocagacoocaacot
002305 ggtocacagaagagooctotooooocatgeoatacteoatocacectoootocootagagotattoteoot
002369 ttgggtttottgeotgottoaattttatacaaccattatttaaatattattaaacacatattgtt
002433 cteta

Locate open reading frames (ORFs) in the mouse gene. Type:

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

3-47

3 Sequence Analysis

seqshoworfs creates the structure mouseORFS.
mouseORFs =

1x3 struct array with fields:
Start
Stop

The mouse gene shows the longest ORF on the first reading frame.

Frame 1

000001 geoetgotggaaggggagetggecggtgygecatgygococggoctygcagygctetgggtttogotgotyge
000055 tggogygogygogttggottgottgygocacggocactygtygyoocgtygococagtacatoccaaaocta
000129 ccaccggogcoctacaccctgtacccoccaacaactteoccagttocggtaccatgtcagttocggococygeg
000193 caggocgggctgogtogtoctogacgagyoctttogacyotacogtaacctgotottoggttooy
000257 goctecttggoccoccgacccagocttctocaaataaacagraaacygttgygggaagaacattctggtggt
000321 ctocgtogtoacagotgaatygtaatgaatttoctaatttggagtoggtagaaaattacacocta
000355 accattaatgatgaccagtgtttactocgeoctotgagactgtctyggggogotctocgaggtotgg
000449 agactttocagtcageottgtttggaaatcagotgagygocacgttotttatcaacaagacaaagat
000513 taaagacttteoctogattoccoctcaccggggocgtactgctggatacatctogecattacctgeca
000577 ttgtctagocatoctggatacactggatgtocatggoatacaataaattocaacgtgttoccactygge
000641 acttggtggacgactcttocttcccatatgagagocttcactttoccagagetcaccagaaaggg
000705 gtocttocaaccctygtcactocacatotacacagocacaggatgtgaaggagygtcattgaatacgeoa
0007589 aggcttoggggtatcocgtgtgotggecagaatttgacactoctggeocacactttgtoctggggygc
000833 caggtgoccotggygttattaacacottgotactotygggtotcatotototyggocacatttggace
000597 ggtgaaccccagtcoctcaacagecacctatgacttcatgageacactcttcctggagatcagetcea
000951 gtottocooggacttttatoctocacoctgygagyyggatgaagtogacttocacctygotggaagtoca
001025 accccaacatccaggccttcatgaagaaaaagggctttactgacttcaagoagoctggagtoott
0010589 ctacatcoccagacgotgotggacatogtototgattatgacaagggotatgtgygtgtygocaggay
001153 gtatttgataataaagtgaaggttoggcoccagatacaatcatacaggtgtgygcgggaagaaatygce
001217 cagtagagtacatgttyggagatgcaagatatcaccaggygotgygottoocgyggoocctgotgtotyge
0012581 tcoctggtacctgaaccgtgtaaagtatggcocctgactggaaggacatgtacaaagtggagocc
001345 ctggogtttoatggtacgoctgaacagaagygotoctggtoattyggaggyggagygocotgtatgtggy
001409 gagagtatgtggacagcaccaacctyggtocccagactoctggooccagagogggtgoccgtogotga
001473 gagactgtggagcagtaacctgacaactaatatagactttgoctttaaacgtttgtogeoatttc
001537 cgttgtgagotggtgaggagaggaatccaggoccageoccatcagtgtaggetgotgtgagoagy
001601 agtttgagoagacttgagooaccagtgotyaacacocagyagdtigotgtoctttgagtcayet
001665 gogotgagoaceocagyagyytgotgyocttaagagageagyteccggyyeagygectaatecttoo
001729 actgoctoocodyocaddyyadadoaccocttyecediytyoooctgtgactacagagasgyadg
001793 ctggtgotggoactggtgttcaataaagatctatgtggocattttcote

Compare Amino Acid Sequences

The following procedure illustrates how to use global and local alignment functions to
compare two amino acid sequences. You could use alignment functions to look for

3-48

Compare Sequences Using Sequence Alignment Algorithms

similarities between two nucleotide sequences, but alignment functions return more
biologically meaningful results when you are using amino acid sequences.

After you have located the open reading frames on your nucleotide sequences, you can
convert the protein coding sections of the nucleotide sequences to their corresponding
amino acid sequences, and then you can compare them for similarities.

1 Using the open reading frames identified previously, convert the human and mouse
DNA sequences to the amino acid sequences. Because both the human and mouse
HEXA genes were in the first reading frames (default), you do not need to indicate
which frame. Type

humanProtein
mouseProtein

nt2aa(humanHEXA.Sequence);
nt2aa(mouseHEXA.Sequence);

2 Draw a dot plot comparing the human and mouse amino acid sequences. Type

seqdotplot(mouseProtein, humanProtein,4,3)
ylabel('Mouse hexosaminidase A (alpha subunit)')
xlabel('Human hexosaminidase A (alpha subunit)')

Dot plots are one of the easiest ways to look for similarity between sequences. The
diagonal line shown below indicates that there may be a good alignment between the
two sequences.

3-49

3 Sequence Analysis

3-50

Human hexosaminidase A (alpha subunit)
100 200 300 400 500 600 o0 800
T T T T T T T T

100 - N) . : J

r
=1
=]

T
I

400 - .

Mouse hexosaminidase A (alpha subunit)
g
T
e
Il

500

600

Globally align the two amino acid sequences, using the Needleman-Wunsch
algorithm. Type

[GlobalScore, GlobalAlignment] = nwalign(humanProtein,...

mouseProtein);
showalignment (GlobalAlignment)

showalignment displays the global alignment of the two sequences in the Help
browser. Notice that the calculated identity between the two sequences is 60%.

Compare Sequences Using Sequence Alignment Algorithms

Identities = 491/812 (80%), Positives = 575/812 (71%)
001 SCRREAQSALRSRSLRSRPEVEGOGVGPEGVAGAEPPLVT*FLDKSRGRESEDOGLTWEAESER

11 |: | [11 |
001 ————--—- R GR-——————- R B-———G-R-—————— W

085 GDORAMTESELWFSLLLAAAFAGRATALWPWPCONFCOT SDORYVLYPNNFOQFOYDVESAROPGE

(N N A e R A e R RN R AR DR RN AR NN N
010 ----AMAGCRLWVSLLLAARALACLATALWPWPQYIQTYHRRYTLYPHNFQFRYHVSSARQAGC

129 VLDEAFCRYRDLLEGSGSWPRPYLTGEEHTLERNVLVVSVVIPGCHOLPTLESVENYTLTINDD

R R R R R A A R R R AR AR AR
070 VLDEAFRRYRNLLFGSGSWPRPSFSNKQOTLGENILVVSVVIAECNEFPNLESVENYTLTINDD

193 QCLLLSETVWGALRGLETFSQOLVWESAEGTFFINKTEIEDFPRFPHRGLLLDTSEHYLPLSSIL

(AN AR R R R R R R R R RN RN RRR RN EARRRRNRRRR R
134 QCLLASETVWGALRGLETFSQLVWESAEGTFFINKIEIKDFPRFPHRGVLLDTSREYLPLSSIL

257 DTILDVMAYNELNVFHWHLVDDPSFPYESFTFPELMEEGSYNPVIHIYTAQDVEEVIEYARLRGT

Peerererer=eeeneererr peeeeeeeerer rere=eenenererne e reenrntl
198 DILDVMAYNEFNVEHWHLYVDDSSFPYESFIFPELTREGSFNPVIHIYTAQDVEEVIEYARLRGL

321 EBVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEFMSTFFLEVSSVFPDF

TREERREEREr e e eeenernenrnrs beereenr ezt ent=nntnnl
262 RVLAEFDTPGHTLSWGPGAPGLLIPCYSGSHLSGTFGPVNPSLNSTYDFMSTLFLEISSVEPDE

385 YLHLGGDEVDFICWESHPEIQDFMEEEGFGEDFEQLESFYILQTLLDIVISYGEGYVVWOEVEDN

LEErrrrrrerrenrerr=ee vr=eeer tereerenreereereer=0 reerrerend
326 YLHLGGDEVDFICWKSNPNIQAFMERKGF-TDFROLESFYICQTLLDIVSDYDEGYVVWOEVFDN

449 EVEIQPDITILIQVWREDIPVHNYMEKELELVIFAGFRALLSAPWYLNRISYGPDWEDFYIVEFPLAFE

AN N e R R R N R R N R N AR B A R RN
289 EVEVEPDTIIOVWREEMPVEYMLEMODITRAGFRALLSAPWYLNRVEYGPDWEDMYKEVEPLAFH

513 GTPECKALVIGGEACMWGEYVDNTINLVPRLWPRAGAVAERLWSNELT SDL.TFAYERLSHFRCEL

(AN AR RN R AR R R R RN RN R RN EE RN RERN RN RN
453 GIPEQEALVIGGEACMWGEYVDSTHNLVPRLWPRAGAVAERLWSSHNLITHNIDFAFERLSHFRCEL

577 LERGVQAQPLNVGFCECQEFECT*APGIEEGAGCR*MVVEPGFHCILARGRSPLPSCPLPACPCR

OO O A O e O B A | I 11
517 VRRGIQAQPISVGCCEQEFEQT*A--T—-SA—-E-——-HPG--————— G—————- C———-CB--

641 WRERGRCWRSHSIESNVAFFYNEHGLEVFEEESVNGVRVEAOPGWSOCLPLRSFELRAGNETYS
l: :: I | HHA | HE- - I =1 H-
552 ————— L-30-LE-——*4———————— P-—-ERE-V--LALR-E--—-Q0-VP--G-Q-——-G—*5FT

705 LCAVLPCL*AMSLPSHES*PYSRHLP*SSACSLHFCIISPRRWYMEEDVGAWRCSGOWGGLOTOP
I oresl H I I [el [[
578 ————————— L-3RPEES-—-T——-F-———CP-——-C—-LPVT--TEEELGL-———GT--GV-=0-

762 GHREASPPCILIHLPPLELFSFGFLAASTLYNHYLNIIKHILFS
[T I 3-51

606 ——"R——————————mmmm— e S-MW-HE-——————— L—-

3 Sequence Analysis

3-52

The alignment is very good between amino acid position 69 and 599, after which the
two sequences appear to be unrelated. Notice that there is a stop (*) in the sequence
at this point. If you shorten the sequences to include only the amino acids that are in
the protein you might get a better alignment. Include the amino acid positions from
the first methionine (M) to the first stop (*) that occurs after the first methionine.

Trim the sequence from the first start amino acid (usually M) to the first stop (*) and
then try alignment again. Find the indices for the stops in the sequences.

humanStops = find(humanProtein == '*"')
humanStops =

41 599 611 713 722 730

mouseStops find (mouseProtein == '*')

mouseStops
539 557 574 606

Looking at the amino acid sequence for humanProtein, the first M is at position 70,
and the first stop after that position is actually the second stop in the sequence
(position 599). Looking at the amino acid sequence for mouseProtein, the first Mis
at position 11, and the first stop after that position is the first stop in the sequence
(position 557).

Truncate the sequences to include only amino acids in the protein and the stop.
humanProteinORF = humanProtein(70:humanStops(2))

humanProteinORF

MTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYVLYPNNFQFQYDV
SSAAQPGCSVLDEAFQRYRDLLFGSGSWPRPYLTGKRHTLEKNVLVVSVV
TPGCNQLPTLESVENYTLTINDDQCLLLSETVWGALRGLETFSQLVWKSA
EGTFFINKTEIEDFPRFPHRGLLLDTSRHYLPLSSILDTLDVMAYNKLNV
FHWHLVDDPSFPYESFTFPELMRKGSYNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEF
MSTFFLEVSSVFPDFYLHLGGDEVDFTCWKSNPEIQDFMRKKGFGEDFKQ
LESFYIQTLLDIVSSYGKGYVVWQEVFDNKVKIQPDTIIQVWREDIPVNY
MKELELVTKAGFRALLSAPWYLNRISYGPDWKDFYIVEPLAFEGTPEQKA
LVIGGEACMWGEYVDNTNLVPRLWPRAGAVAERLWSNKLTSDLTFAYERL
SHFRCELLRRGVQAQPLNVGFCEQEFEQT*

Compare Sequences Using Sequence Alignment Algorithms

mouseProteinORF

mouseProtein(1l:mouseStops(1l))

mouseProteinORF

MAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYTLYPNNFQFRYHV
SSAAQAGCVVLDEAFRRYRNLLFGSGSWPRPSFSNKQQTLGKNILVVSVV
TAECNEFPNLESVENYTLTINDDQCLLASETVWGALRGLETFSQLVWKSA
EGTFFINKTKIKDFPRFPHRGVLLDTSRHYLPLSSILDTLDVMAYNKFNV
FHWHLVDDSSFPYESFTFPELTRKGSFNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGAPGLLTPCYSGSHLSGTFGPVNPSLNSTYDF
MSTLFLEISSVFPDFYLHLGGDEVDFTCWKSNPNIQAFMKKKGFTDFKQL
ESFYIQTLLDIVSDYDKGYVVWQEVFDNKVKVRPDTIIQVWREEMPVEYM
LEMQDITRAGFRALLSAPWYLNRVKYGPDWKDMYKVEPLAFHGTPEQKAL
VIGGEACMWGEYVDSTNLVPRLWPRAGAVAERLWSSNLTTNIDFAFKRLS
HFRCELVRRGIQAQPISVGCCEQEFEQT*

Globally align the trimmed amino acid sequences. Type

[GlobalScore trim, GlobalAlignment trim] = nwalign(humanProteinORF, ...
mouseProteinORF) ;

showalignment(GlobalAlignment trim)

showalignment displays the results for the second global alignment. Notice that the
percent identity for the untrimmed sequences is 60% and 84% for trimmed sequences.

3-53

3 Sequence Analysis

3-54

Identities = 446/530 (84%), Positives = 502/530 (95%)
001 MTSSRLWFSLLLARAFAGRATALWEWPONFOTSDORYVLYENNFOFOYDVSSAROPGCSVLDER

s 000 beeeeee=r reeereeet =et =rr=prernrer=r reeeer rr rernd
001 MAGCRLWVELLLALZALACLATALWPWEOY IOTYHRRY TLYPNNFOFRYHVESAL0OAGCVVLDER

06> FORYRDLLFGSGSWPRPYLIGKEHILEENVLVVSVVIPGCHOQLPTILESVENYILTINDDQCLLL

(R R N N R R RN R A A RR R R RN RN RN R
065 FRRYRNLLFGSGSWPRPSFSNKOOILGENILVVSVVIAECNEFPNLESVENYILTINDDOCLLA

129 SETVWGALRGLETFSOLVWESAEGIFFINKIEIEDFPRFPHRGLLLDTSRHYLFLSSILDTLDWV

trrrerererrrerereereerrrerrrrrr=esnrrrererr= e rernnn
125 CSEIVWGALRGLEIFSQLVWESAEGIFFINKIKIFKDFPRFPHRGVLLDTSREEYLPLSSILDILDV

193 MAYNELNVFHWHLVDDFSFPYESFIFPELMERGSYNEPVIHIYTAQDVEEVIEYARLEGIEVLAE

treresereeereeer reeererererr reer= e e e e e et
183 MAYNKFNVFHWHLVDDSSFPYESFIFPELTREGSFNPVIHIYTAQDVEEVIEYARLRGIRVLAE

237 FDIPGHILSWGPGIPGLLITPCYSGSERSGTIFGPVHPSLNNIYEFMSTFFLEVSSVEFPDFYLHELG

trrrerereerrr rreereererr:s reerrererrrr=er=rerr=nre= e
257 FDIPGHILSWGPGAPGLLITPCYSGEHLSGTFGPVHPSLNSTYDFMSTLFLEISSVFPDEYLELG

321 GDEVDFICWESHNPEIQDFMEEEGFGEDFEQLESFYIQTLLDIVSSYGEGYVVWOEVEDNEVEIQ

trererererere=er reseeer rrrrerrrerrrerrrer= e otz
321 GDEVDFICWESHNPNIQAFMEEKGF-TDFEQLESFYIQTLLDIVSDYDEGYVVNQEVEDNEVEVE

385 PDIIIOVWREDIPVHNYMEELELVIEAGFRALLSAPWYLNRISYGPDWEDFYIVEFPLAFEGIPEQ

Prrrererer==ee=0r re= st tnterrrernrereresnreersn rreeer=nrnnnl
384 PODIIIOVWEEEMPVEYMLEMODITRAGFRALLSAPWYLNEVEYGPDWEDMYKVEPLAFHGIPEQ

445 EFALVIGGEACHMWGEYVDNINLVPELWPRAGAVAERLWSHNELTSDLTFAYERLSHFRCELLERGV

(RN R R R R R R R R AR R R A RN R RN RR R R
448 KALVIGGEACMWGEYVDSINLVPRLWPRAGAVAERLWSSNLTINIDFAFKRLSHFRCELVRRGI

913 OQAQPLNVGFCEQEFEQT*

PEEr==00 e
512 QAQPISVGCCEQEFEQT*

Another way to truncate an amino acid sequence to only those amino acids in the
protein is to first truncate the nucleotide sequence with indices from the

Compare Sequences Using Sequence Alignment Algorithms

seqshoworfs function. Remember that the ORF for the human HEXA gene and the
ORF for the mouse HEXA were both on the first reading frame.

humanORFs = seqshoworfs(humanHEXA.Sequence)

humanORFs

1x3 struct array with fields:
Start
Stop

mouseORFs seqshoworfs(mouseHEXA.Sequence)

mouseORFs

1x3 struct array with fields:

Start
Stop
humanPORF = nt2aa(humanHEXA.Sequence(humanORFs(1).Start(1):...
humanORFs (1) .Stop(1)));
mousePORF = nt2aa(mouseHEXA.Sequence(mouseORFs(1).Start(1):...

mouseORFs(1).Stop(1)));
[GlobalScore2, GlobalAlignment2] = nwalign(humanPORF, mousePORF);
Show the alignment in the Help browser.
showalignment(GlobalAlignment2)

The result from first truncating a nucleotide sequence before converting it to an
amino acid sequence is the same as the result from truncating the amino acid
sequence after conversion. See the result in step 6.

An alternative method to working with subsequences is to use a local alignment
function with the nontruncated sequences.

Locally align the two amino acid sequences using a Smith-Waterman algorithm. Type

[LocalScore, LocalAlignment] = swalign(humanProtein, ...
mouseProtein)

3-55

3 Sequence Analysis

3-56

LocalScore =
1057

LocalAlignment =

RGDQR-AMTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYV .

S R A NN L RN R N R R N Y AR
RGAGRWAMAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYT .

Show the alignment in color.

showalignment(LocalAlignment)

Compare Sequences Using Sequence Alignment Algorithms

Identities = 454/547 (83%), Positiwves = 514/547 (94%)
1 ERGDOR-AMTI3RLWFSLLLAALFAGRATALWEWECONFQTIDORTVLYPNINFQF QYDUWSSLAQP

e e N R I R R R R R
1 RGAGRWAMAGCRLUVSLLLAAALACLATALWPWFQYIQTYHRRYTLYPNNFOFRYHVSSLAQLG

g4 CAVLDEAFORYRDLLFGEGSWPRPYLTGERHTLEFINVLWVY EWVWTPGCHOLPTLERVENYTLTIN

R R R R RN e R R R A R R RN
65 CVVLDEAFRRYRMLLFGEGEWPRPSFSNEQQTLGENILVVSVVTAECHNEF PNLESVENY TLTIN

125 DDOCLLLSETVWGALRGLETFIQLVITESAEGTFF INETEIEDFPRFPHREGLLLDTSREHYLPLIS

RN R R R R R R A R R RN RN RN R R RR RN
129 DDQCLLASETVWGALRGLETFZOLVWESAEGTFF INKTEIEDFFRFPHRGVLLD TSRHYLFLSS

192 ILDTLDVHAYMELMNVFHUHLVDDPEFPYESF TFPELMREGEYTHNPVTHIYTAQDVEEVIEYARLE

Frrrerrrerrr=errerreerr crreerre e et rrrrs e e e e e e e
193 ILDTLDVMAYTNEFNWVFHWHLVDDSSFPYESF TFPELTREGSFNPVTHIYTAQDVEEVIETARLE

256 GIEVLAEFDTPGHTL3IWGPGIPGLLTPCYSGIEPIGTF GPVIPILNNTYEFNSTFFLEVISVER

RN R N e R R R RN A R RN R RN
257 GIRVLAEFDTPGHTLSWGPGAPGLLTPCYSGIHLAGTFGPVHPSLNSTYDFNSTLFLEISSVEE

320 DFYLHLGGDEVDFTCWESNPEIQDFMREEGFGEDFEQLESFYIQTLLD IVEEYGEGYVWITQEVE

Frrrerrrerrrerrrerrr=er er=rerr rrrrrrr e e e e et et ety
321 DFYLHLGGDEVDFTCUWESNPNIQAFMEEEGF-TDFEQLESFYIQTLLD IVSD YDEGYVVIQEVF

384 DNEVEIQPDTIIOVWRED ITPVHYMEELELVTEAGFRALLSAPWYLNRISYTGFDWEDFYWWERLL

PEEEEs b rrrrrrrrssrrstr fbee st bbb e e e e st 1t
384 DNEVEVREPDTIIOVWREEMFVEYMLEMODITRAGFRALLZAPWYLNEVETGFDUKDMTEVEPLL

4453 FEGTPEQEALVIGGELCHWGEYVDNTHNLVPRLWPRAGAVAERLSNELTZDLTF AYTERLIHFRC

Farrrrrrerrrer e e e ettt e e e e e et e tbess Pt
443 FHGTPEQEALVIGGELCHUGEYVDETHLVPRLWPRAGAVAERLWSSHNLTTHIDF AFERLZHFRC

512 ELLRRGVOQALQPLNVGFCEQEFEQT*APGTEEGLGC

Fretrr=tirbs=tr TEEErrrrrr sxps =
512 ELVRRGIOQACPISVGCCEQEFEQT*ATSAEHPGGC

3-57

3 Sequence Analysis

View and Align Multiple Sequences

3-58

In this section...

“Overview of the Sequence Alignment App” on page 3-58

“Visualize Multiple Sequence Alignment” on page 3-58

“Adjust Sequence Alignments Manually” on page 3-59

“Rearrange Rows” on page 3-67

“Generate Phylogenetic Tree from Aligned Sequences” on page 3-69

Overview of the Sequence Alignment App

The Sequence Alignment app integrates many sequence and multiple alignment
functions in the toolbox. Instead of entering commands in the MATLAB Command
Window, you can use this app to visually inspect a multiple alignment and make manual
adjustments.

Visualize Multiple Sequence Alignment

1 Read a multiple sequence alignment file of the gag polyprotein for several HIV
strains.

gagaa = multialignread('aagag.aln')
2 View the aligned sequences in the Sequence Alignment app.

seqalignviewer(gagaa);

View and Align Multiple Sequences

|
O

|4\ Biological Sequence Alignment -

File Edit Display Help

444 @

cmm’",!GAR-IISVLSGKKLDENEKIRLlPGGKKKVMLKHIVNAAKELDIFGLIESLLESKEGCQKILSVLQPLVPTGSEIILKSLFIITVCVINCIHAEE

45 50 55 60 5 ™ ™ & 85

HI-2 FaLaEsLLEsMEGca LTVLDPMVPTGSENL LFNTVCVIWCI
HIVZMCN13 FoLaEsLLEsMEGCa LTVLGPFLVPTGS ENL LENTVECVIWCI
SIS FGLAESLLENMEGCO LSVLAPLVPTGSENL LYNTVCVIWCI
SIVMMZEI FGLAEsSLLENMEGCa LSVLAPLYVPTGSENL LYNTVCVIWCT
HIV-2UC1 FGLAESLLEsMEGC LTVLAPLVPTGSENL LFNTVEVIYCL
SlVemSLaz FGSaES L LES@EGCQ LAVLAFPLMPTGS ENL LESTVEVUWEL
SIVAGMAETTA FoLWERL LET®EG Ca IEVLTPLEPTGSEGL LFNLCCVIWCI
SIVAGM3 FoLMERML LESEEGC TEVLYPLEPTGSEGL LFELVECVLFCVY
Slvmd5440 FoLMWERL LESQEGCE LSV LFPLYPTGSENLISLYNTCCCIWEY

HIv-1 YALNPGLLETSEGCMI0TIIGQRLOPAIQTGTEEL LYNTWATLYCWY

HIVI-NDK FTLNPGLLETSEGCHMGIIGQLAFPSIQTGS EET LYNTWVATLYCVY

Svens FACNFPGLMETAEGCEQLL LEFPALBITG S EGL LFETLAVLWEY
CheazUS FACNFPGLMETABGCLOLL LEFPALBITG S EGL LFETLAVLWEY
SleETANT FAMNFGLMENVEGCW ILQLAPSVDBIGSFEIISLFNTICVLYCY
Sivman FGLSDBSLLETQBGC LEVILPLGPTGSEST LFGIASVLYCT
SiVinaest FGLGSQLLETAEGC LSVEWPLYATGS L LVeTvVEVICEC

5 10 45 50 &5 1] a5 ™ 75 al 85

-

~ 14

TR UGB D O

Adjust Sequence Alignments Manually

Algorithms for aligning multiple sequences do not always produce an optimal result. By
visually inspecting the alignment, you can identify areas whose alignment can be
improved by a manual adjustment.

1 To better visualize the sequence alignments, you can zoom in by selecting Display >
Zoom in. Select this option multiple times until you achieve the zoom level you want.

2 Identify an area where you could improve the alignment.

3-59

Sequence Analysis

[# Biclogical Sequence Alignment - 1 — O *
File Edit Display Help k]
VW \ETE B
m
mgmm --------- POV ORPUAPococccoccooo00000o %%
115 120 125 130 135 140 145 150 155 160 165 170 175 1B0 185
HIV-2 GNYPVQI.VGGNYT IPLSP TLHNA
HIV2-MCN13 GNFPVOQ.VGGNYT VPLSP TLHNA
SNMMM251 GNYPVOQ.IGGNYYV LPLSF TLHNA
SNMMMZ39 GNYPVQQ.IGGNYY LPLSFP TLHNA
HIV-2UC1 GNYPVOQQ.TITAGNYV MPLSEP TLHNA
SNsmSLa2h . GNYPVOQ.VGNNYYV TPLSP TLHNA
SNMAGMETTA GISINTFVVN.QNNAUV QPLSP TLHNA
SNAGM3 SQNFPAQQ.QGNAWTI VPLSP TLHNA
SNMmnd5440 IINYPIQV,INQTPV QGISP TLHNA
HIV-1 QVSOQNYPIVOQNLQGQOQMY QAISP TLHNA
HIV 1-MDK QVSQNYPIVQNLQGOQMVEIQAISPRITLNGA
Shcpz INYP\'VQNAQGQLV gPmspPRITLNA
ClvepzUS IGSSNYPVIAQNAQGOMY QAMS P TLHNA
SNepzTAN1 SGSIL'I‘PVIT AQGVA QPISP TLHNA
Smon GY¥PSGNYPVVBITOGGGFQ QAVIP |_|_I-r
Shihosst (& GGNYPLI NQ w v TPLSEP TI1IQT
185 |
H| O
|“’ "
1 | |l\ TR ‘ [L] | “lll' o \
| do e ' ‘ |15 ff
N | Ly
I IIIII | lIIII | N I IIIII II IIlIIll
--- | Seg --- | &ln --- |
3 Click a letter or a region. The selected region is the center block. You can then drag

the sequence(s) to the left or right of the center block.

3-60

View and Align Multiple Sequences

|4 Biclogical Sequence Alignment - 1 — O X
File Edit Display Help k]
4L A4 =

~

Consensus (@ G TAEK - = = = = = = = = MPOQTSRPTAIP|= = = = = = = = = = = = = = = = = = PSG-GGNYPVQOQ-VGGNYVHQPLSPRTLNA
115 120 125 130 135 40 145 150 155 160 165 170 175 1B0 185
Hve TeTael. mestTsReTale| ..o 55 E ccnvnvql.vccuv'r TpLSPRITLNA
H|V2_MCN‘|3TGTAEI MPNTS PTAIPI. . . o . o o o o o o000 PSGRIGGN FPVQOQDQ . VGGNYTHIVPLSP TLHNA
SWMMZ5 TG TAET oo v .. me@rsReralpl. ... SSGRGGNYPVOQ.IGGENYVHILPLSPRITLNA
SwmMzag TETTET MPITS BTARL ..o SSERIGENYPVQQ. IGENYVHLELSPERITLHNA
HIv-zUet [T ER .. meaTs@eTale| oL PS. . GENYPVAG . TAGNYVHMPLSPRTLNA
SwemSLazh SGTAEM. LeaasRerale|. L P S YPVOOQ.VGNNYVHITPLS PRITLNA
swacmaTTA NERIA A L. NE TTAPP| . o PG NYPVVN.QNNAWVHOQPLSPRITLNA
svacms ERk AERINTTETSSGa NeRlevTvlel. .o Lo PG FPaga.QGNAWIMIVPLSPRITLKA
Shmnd54a0 BIE N A A S EEE GATAI,ST? ,,,,,,,,,,,,,,,, P A YyPiagv.I1naTPVvRlaGcT s PRITLNA
v A QQAA ADTGNN A s YPIVONLGQGOQMVIEloA IS PRITLNA
Hivi-nok BT Q@A A . . . L. L. ADS . ..o e s YPIVOQNLQGOQMVEloAISPRITLNA
Shicpz @EVAQP Qaaaab . . .|| ... oL 5 yevvanagcaLvRlarMs P RTLNA
CNCFZUSQEEIEQ QAOOQEASG. (|| o o o o 0Ll o e e e e 5N ¥YPVIQNAQGOMVEOQOAMS P TLHNA
SWepzTANI NS TATS scqlquasz EETVPPSGNTGNTGIATETP YPVITDAQGVA aPIsSPRITLNA
swrmnqcqun AAAAAPPTGE[. | « v v v vt i e e e e G YPYVRTQGGGFQHQAVEFP LLIT
Shihosst 6 BAT . o o e e e e e anr.I.:uQ WwyvRTPLSPRITIOT
115 120 125 130 135 o 145 150 155 160 165 170 175 180 185

~ 14

Kl

R OGR4

SIvmdsa40 | Seq 8 | Aln 140 |

4 To move a single letter (T in this example), click and drag the letter T (center block)
to the right to insert a gap.

3-61

Sequence Analysis

[# Biclogical Sequence Alignment - 1 — O *
File Edit Display Help k]
4L A4 E{
— -
mgmm --------- MPQTSRPTAP[[- === -ncmccmenmnn- GNYVHQ
115 120 125 130 135 4 145 150 155 160 165 170 175 1B0 185
HIV-2 ael | .o s s R vql.vccnv'r 1pLsPRITLNA
HIVZ-MCN13 N O PSGRIGGN FPVQOQDQ . VGGNYTHIVPLSP TLHNA
SNMM251 N O SSGEGGNYPVOQ.IGGNYV LPLSF TLHNA
SWMM239 arl | oo SSGRGGNYPVOQ. IGEHNYVHILP LS PRITLNA
HIV-2UC1 AR PS. . GENYPVAG . TAGNYVHMPLSPRTLNA
SNsmSL92b N O PS. .GGNYPVQQ . . VGNNYVHEITPLSP TLHNA
SVAGMETTA ARl | oo PGGISINT vvN.oNNAwvElaP LS PRITLNA
SMAGM3 vel |l oo PGG.SQNFPAQQ.QGNAWIHIVPLSPRITLNA
SNmnd5440 L - BAV NYPIQV.INQTPVHRGGT SPRITLNA
HIV-1 QVSANY IVONLOQGOQMVEOQAISP TLHNA
Mvinok BITQEAA L L L. L L. ADS . L L. L. QVSONYPIVONLQGQMVHEQAIS PRITLNGA
Shepz AVSIN\‘ vvanagcaLvillarms e RITLNA
ClVepzUS IGSSNYPVIOQNAQGOMVYEOAMS P TLHNA
ShepzTANT NS TATS SGSIL‘l VITDAQGVA QPISP TLHNA
Swmen @ GE QA GY¥PSGNYPVVRITQGGGFQ QAVIP LLIT
Shihosst (GO @ T e LEENYPLI NoRwvBTe Lsp@TIaT
115 120 125 130 135 140 145 150 155 160 185 170 175 180 185 |
=
Kl | o)
15 187
g [| l] | ” i I‘ '|' ‘ | ‘ | | ‘l | I|I| ‘I “[. ‘HIII'
1 1 \ mni
| ! 11 ! P' [1 ||||| ! g 1 : [| |
B LA A T 1 e
15lI| I 1 . I!|I I !l II‘I ‘. " I /| 15 I lllll 1 n [1 I| [} { |II|I| { I |I ||Il |Il ! I
[STvmds440 | seq 9 | Aln 140 |

5

3-62

Close the gap by dragging the letter back to the left.

View and Align Multiple Sequences

[# Biclogical Sequence Alignment - 1 — O *
File Edit Display Help k]
£ 44 ETELE

~

Congensus @G TAEK = === ===+ MPQTSRPTA|P|- - = - = = ----=-==-=-- %%
115 120 125 130 135 40 145 150 155 160 165 170 175 1B0 185

Hiv-2 alel o oo 55 ccnvnvql.vccnv'r TpLSPRITLNA
HIV2-MCN13 L | PSGERIGGN FPVQQ VGGNYTHIVPLSP TLHNA
SNMMM251 L | SSGRGCGGHNYPVOQ.IGGHNYV LPLSF TLHNA
SIVMM239 alel oo SSERIGENYPVQQ. IGENYVHLELSPERITLHNA
HIV-2UC1 3 PS. . GENYPVAG . TAGNYVHMPLSPRTLNA
SNsmSLa2h L | PS. . GGNYPVQQ . VGNNYVHEITPLSP TLHNA
SNMAGMETTA L - PGGISINTFVVN.QNNAUV QPFPLSP TLHNA
SIVAGM3 vilelo oo PGG.SAQNFPAQG. QGNAWIMIVPLSPRTLKA
SWmnd5440 Al o PAVHNVFIQV,INQTDV aGcIsPRITLNA
HIV-1 YPIVONLQGOMVEIQOATISP TLHNA
HIV1-NDK YPIVOQNLQGOQMVEloAISPRITLNA
Shepz yevvanagcaLvRlarMs P RTLNA
ClvepzUS ¥YPVIQNAQGOMVEOQOAMS P TLHNA
SNepzTAN1 YPVITDAQGVA QPISP TLHNA
SWman YPVVRITQGGGFQ QAVIP LLIT
Shihosst 6 YPLI NogRwvHlTPLsPRTIGQT

165 |

=

O

W

I

.

DL

il

SIvmds440 | Seq 8 | Aln 13 |

6 You can also move multiple residues (a subsequence). Suppose you want to move a
subsequence to available gaps. First select the gap region that you want to fill in.

3-63

Sequence Analysis

|4 Biclogical Sequence Alignment - 1 — O X
File Edit Display Help k]
4L A4
=
Gonsensus AEQGTAEK == = = = = = = - MPQTSRPTAP[- == -=-c-oooonen--- PSG-GGNYPVQQ-VGGNYVHQPLSPRTL
15 120 125 130 135 40 145 150 155 160 165 170 175 180 185
e el - ... s s ccuvpvql VEGNY T T
HIVZ-MCNA3 AR[.o PscRICGNFPVQQ. VEGHYT T
SIVMM51 AP .o sSGRIGGNYPVQQ.IGGNYV T
Y AR sSGRIGGHNYPVQQ.IGGNYVHILPLS PRIT
HIV-2UC1 AR[.o PS. . GGNYPVOQ. TAGHNYVRIMPLS T
SVsmSLazh AR[.o PS. . GGNYPVQQ.VEGNNYVRITPLS T
SIVAGMETTA APl o Pcclslnvpvvu.quuauv QPLs T
] VRl o PCG.5QNFPAQQ.QGNAWIMIVEPLS T
SWVmnd5440 AT) .o PAY NYPIQV.INQTPVHQGLS T
Hiv BORRRIA Q @ A A CABTENN. o o oo oii et . SQVSQNYPIVQNLQGQMVHQATLS T
HvinoK RORIRIT Q@ A Ao i . CADS . e e L SQVSQNYPIVQNLQGQMVHQATLS T
swepz RIEQEVAQP@gaaaebl. .. .| ... savsfnvevvan v s T
CivepzUs PR P SNIGSSHYPVIQN v s T
SvepzTant INNSTATS G-TVPPSGNTGNTGIAT.TPSGSILVPVIT s T
svmon [GEQcEaa. TG .| e e LEVPSGNYPRVY
swvihosst A Ao aT LEGNYPRLI
15 120 125 130 135 140 145 150 155 160 165 170 175 180 185
|
|

MR

Il

il

i

L

SIVmds440 | Seq 9 | Aln 157 |

7

3-64

Drag the subsequence(s) from the right or left of the gap region into the gap area.

View and Align Multiple Sequences

4. Biological Sequence Alignment - 1 — O X
File Edit Display Help k]
A A4
~
Consensus AEQGTAEK = = = = = = = = = MPQTSRPTAP[- == - cceeeeeeeeea- PSG-GGNYPVQQ-VGGNYVHQPLSPRTL
15 120 125 130 135 40 145 150 155 160
vz RETETAEM. - - - . . . mpsTs@eT AR - s E
H.\,Z_M.:maazrcrnzl MPNTSRIPTAP[.. PSG
ShnmMzEt METGETAET me@rs@eracr s s 6
Shnmzig METGETTET mersBerar L. 55 6
vauct aBT .. EM. . 0L MPATSRIPTAP[.. PS .
SvsmSlazn MESGTAEM. LepagsReTaAR| .. oL PS .
svacnerra DRINERA . . L. ME .. TTAR| Lo P6GE
vl NTTETssco@Rnofevrve| L PGG
svmndssso VERIEIN A A S EEERGATAT| - -ov.l
v EORIA Q @ A A ADTGENN « o o | oo oo e sqv
Hivi-nDk RIESEIT Q@ @ A Al L ADS .. e e sav
Swepz RIEQEVAQR eeeaad. . . .| ... sav
Clvepzus QQEEMED OCOERIARS G e s s s e e e e e e e e e e e S NIG
SepzTani JINNSTATS SGQIQNAGElEETVPPSGNTGNTGIATETPSG
svmon GElacElols ARAAAPPTG .| oo ov it ittt .evep
Shvihosst A & G L T L R R
15 120 125 130 135 140 145 150 155 160

W

it Il

AE e
L

'H 'III 1 l|.

T

il 7%

Kl
1
16
[

SIVmds440 | Seq 9 | Aln 155 |

8

Suppose you want to remove one or more of the aligned sequences. First select the

sequence(s) to be removed. Then select Edit > Delete Sequences.

3-65

3 Sequence Analysis

z Biclogical Sequence Alignment - 1 - O

File = Edit Display Help

£z 4 Copy Cirl+C
Delete Sequences I
a§
Select All [y gy — T .
ol ~MPOTSRPTAP - = === 2occeoeeneaaa=- PSG-GGNYPVAQQ-VGGNYVHQPLSPRTLNA
Deselect All

130 135 140 145 150 155 160 165 170 175 180 185
¥ PV QI LVGEGGNY
PVYQQ.VG

Move Rows(s) up

Move Rows(s) down
NY

HI

Move Rows(s) to Top

NY

ta

PVQQ.IG

Move Rowsis) to Bottom

Remove Empty Columns

VAo . . TAGNY

VQQ.VGNNY

YV K

= T
G T
G v
PVRG.IGENYV
(5 %
N v
N v

< = < < = m
L

AW

QN
Aqa.
Tawv .

AW

Q6
INGTP

....................... Ivanw

Lgecam

.......................... IVaN

LQGQM

....................... vVan

AgealL

=
=

z z = = = zz = =z 7 =z = = =

B x B B @ B B B B B B

VIQNAQGAOM

~ 14

AR

| I|I|. il [l ‘HIII'

TR

9 Remove empty columns by selecting Edit > Remove Empty Columns.

3-66

View and Align Multiple Sequences

|4\ Biological Sequence Alignment - 1 O X
File = Edit Display Help k]
A 2 Copy Ctrl+C
I Delete Sequences]
Select Al Ciri+A M
CMPNTSRPTAP- === -============ PE5G-GGNYPVQO-I1GGNYVHOPLSPRTLHNA
Deselect All
130 135 140 145 150 155 160 165 170 175 185
TR O mesTs@eTae . 55 E ccuvpuql,vccnvr TLNA
) TRl s CMPNTSRIPTAP . o o o o . PSCRIGENFPVQQ. VEGNYT TLNA
v s T cme@rsReTaAR . L L SSGRGGNYPVOQ. IGGNYV TLHNA
M=k et BliolEotion CMPRTSRPTAP . oL SSGRGGENYPVQQ. IGGNYV TLNA
Remove Empty Columns V\l\g—'"P‘TS PTAP . . .o PS5 . . GGNYPVOO.TAGHNYV TLHNA
SwemsLezp SETAEM. LPAQSRPTAP PS5 . . GGNYPVQO.VENNYV TLHNA
svacmsrra NERA A . 00 0L NE TTAP . oo v et pccsslnvpvvu.qnnauv TLNA
SVAGME MTTETSsGQ N EVTVEPR L L PEG.S5QNFPAQD . QGNAWTL TLNA
Shmndsaso IE M A AS L. .. EEEMcATAT pavlsluvplqv.tno'rpv TLHNA
v Bagaaa oL ABTGNMN . . L .o EOVEONYPIVONLOGQMY TLHNA
Hvinok BTQaaa . . .o oL AD S ..o SQVSONYPIVONLOQGQMY TLNA
Shepz [REVAQE L eeooQd savsluvpvvquachu: TLNA
CepzUs EQ QOOEASE ENIGSSHNYPVIGQNAQGAQMY TLHNA
Sman AL AAAAAPPTGE o it cverschnyrvvlTocecFa LLIT
Shhaast QQT o ot e GGNYPL[I.ENQ "R TigT
15 120 125 130 135 140 145 150 155 160 165 170 175 185

~ 14

s
]

g Ly
i '||" ||'

i

LA

0

‘I‘ll'
|

Kl

1
15
[

--- | Seg --- | Aln ---

10 After the edit, you can export the aligned sequences or consensus sequence to a

FASTA file or MATLAB Workspace from the File menu.

Rearrange Rows

You can move the rows (sequences) up or down by one row. You can also move selected

rows to the top or bottom of the list.

3-67

3 Sequence Analysis

SNmnd5440
HIv-1
HIV1-NDK

ShNepz

ClvepzUS
Shman

Shihoast

G N

LY 5.0 L.
-@gaegap .
.QQQIA!G. . .s

CAAAAAPRP

[

TG .

=
< < < < =< =< =
Rl

IaVv.

I

NaQT

IVAQNLQGQ

IVQNLQGQ

VaNAGEQ

115

125

130

135

140

v
VIQNAQGQ
W

,_
< 2 = & = = =

175

[4] Biological Sequence Alignment - 1 — O X
File = Edit Display Help N
Az 2 Copy Ctrl+C
Delete Sequences -
Select All Ctrl+ &
d CMPNTSRPTAPPSG-GGNYPVOQQ-1GGNYVHOQPLSP RTLNAWVKLVEEKKFGPEVVEMFE
Deselect All
130 135 140 145 150 155 160 165 170 175 180 185
RutSkows iy mMPpsTsRPTAPSS ccuvpvql.vccu*-r v
hi Riouelkonsleidoah CMPHNTSRIPTAPPSGRIGENFPYQQ. VEENYT v
iloelRowstollon cmepfrsRerTarsscReenNyPvog . T6ENY Y VPGF
I“"“"Wmm“ [s MPRTSRPTAPSSGRGGENYPVAQ. IGGENYV VPGF
Remove Empty Columns CMPATSRPTAPPS . . GENYPVOO.ITAGNYV VEGF
ShemSLazh [5 6 T A LLPAQSRPTAPPS . GENYPVOQ.VENNYV VEGF
SWAGMETTA N Ta = MYPVVN. QNNAWY VEME

-
L

E r 2 2 2 E =
n

< o -
-

zldd

ISl
]

--- | seg -=- | Aln --- |

The selected sequence moves to the bottom of the list.

3-68

View and Align Multiple Sequences

[4] Biological Sequence Alignment - 1 — O X
File Edit Display Help N
444

-
Consensus [6 TAEK = = = = = = = = = MPNTSRPTAPPSG-GGNYPVOQQ-IGGNYVHOQPLSPRTLNAWVKLVEEKKFGPEVVPMF
15 120 125 130 135 140 145 150 155 160 165 170 175 180 185
wvzfreTae®. MPSTSRIPTAPSSE ccuvbvql,vccuv'r TPLSPRTLNAWVRILVEE FCAEVVPGFE
HI\I'Z—MCN13TGT‘EI MPNTS PTAPPSGEGGNFPVQQ . . VGGNYTHIVPLSP TLNAWY LVEE FGAEVVPGF
Sswmmzst TETAET meRiTsRlPTAPsSsGRGEGNYPVQR . IGENYVHILPLSPRTLNAWVRLIEE FGAEVVPGF
Symmzag TETTET meRTsRIPTAPsSscREecNYPVGR . TGeNYVHILPLSPRTLNAWYRLIEE FEGAEVVPGF
Hiv2uct T - EK MPATS PTAPPS . .GGNYPVOQOQ . . IAGNYVHMPLSP TLNAWY LVEE FGAEVVPGF
ShemSLazh (S G TAER. LPADS PTAPPS . .GGNYPVQQ . . VGNNYVHEITPLSP TLNAWY LVEE FGAEVVPGF
SNAGMET?ANEIAANE. TTAaPPGGESRNYyPvV N . aNNawWVHlQPLSPRTLNAWYRCVEE WGAEVVPMF
Simndseao (IE N A A S . . L. oL L. EEE GATATPAVIS NYPIgv.INGgTPVHlacIsPRTLNAWVRCIEE FSPEIVPME
HIV-1 AQOAA . L Lo L ADTGNN. SAOVSAONYPIVONLOQGOMVHEOQAISP TLNAWVEVIEEKAFSPEVIPMF
HIV1-NDK TOQoAA . ..o L. ADS SQOVSONYPIVONLQGOMVEQAISP TLNAWVEVIEEKAFSPEVIPMEF
Svepz[QEVAQPE L L L qgaegep. SAVSINYPVVQNAQGQLV QPMSPRTLNAWVEVIEEKRINFNPEVIPMF
civepzus [CEEMEQ . . L L QQQEASG. . .S5NIGSSNYPVIONAQEeaMVMlaamMspPRTLNAWVEAVEERIAFNPEVIPME
SNWHQGE!IA AAAAAPPTG. GVPSGNYPVVIERTOQGGGFOQHMAQAVEP LLITU\"Q\"[EE FAPEV VALEF
Shihoast |6 QAT o o ot e cenvpLIR.Enofwvi@reispRtroTrwvBrveoRcwBlreETvamne

zldd

WL

T

.1'?'&

--- | seq

- | Aln - |

Generate Phylogenetic Tree from Aligned Sequences

You can generate a phylogenetic tree using the aligned sequences from within the app.
You can select a subset of sequences or use all the sequences to generate a tree.

Select Display > View Tree > Selected... to generate a tree from selected sequences.

3-69

3 Sequence Analysis

[4] Biological Sequence Alignment - 1 — O X
File Edit Display Help ~
% A 4; Background
Zoom In =l
Zoom Out
Consens DEWEKIRLRPGGKKKYMLKHIVWAARELD SLLETKEGCQKILSYLAPLVPTGS
Reset to Default Font Size
5 20 25 30 a5 40 45 50 55 B0 B5 T0

Color Schemes

HIV2-MC

SNWMM251
SNMMM239
HIV-2UC1

SNsmSLa2h

SNWAGMETTA

Smnd5440 LFPLVYPTGS

HIv-1 ITGOLAQPAIQTGT

HIV1-NDK IIGOQLAQPSIAQTGS

Shepz Li@aoreEraL@res
ClVepzUs

Shmon

Lk QL P AL TGS
LEVILPLQPTGS

Shihoast LSVCWPLYATGS

o
o = P W WL WL WL n
[L L L I L L L 1)
o e T B s T s s |

SMAGM3

[--- | Seq --- | Aln --- |

A phylogenetic tree for the sequences is displayed in the Phylogenetic Tree app. For
details on the app, see “Using the Phylogenetic Tree App” on page 5-2.

3-70

See Also

4 |
File Tools Window Help Bl
A S

1 HIV-2

HIVZ-MCN13

SIVMMZ51

SIVMM239

HIV-2UCH

a
i

. o 1 8IVsmSLA2h

[m]
i

SIVAGMETTA

=

0.05 0.1 0.15 0.2 0D.25 0.3

See Also

NGS Browser | Sequence Alignment | Sequence Viewer | seqalignviewer

3-71

3 Sequence Analysis

More About
. “Sequence Alignments” on page 1-10
. “Aligning Pairs of Sequences”

3-72

Microarray Analysis

* “Managing Gene Expression Data in Objects” on page 4-2

* “Representing Expression Data Values in DataMatrix Objects” on page 4-5

+ “Representing Expression Data Values in ExptData Objects” on page 4-11

+ “Representing Sample and Feature Metadata in MetaData Objects” on page 4-15
* “Representing Experiment Information in a MIAME Object” on page 4-21

* “Representing All Data in an ExpressionSet Object” on page 4-25

* “Visualizing Microarray Images” on page 4-30

4 Microarray Analysis

Managing Gene Expression Data in Objects

4-2

Microarray gene expression experiments are complex, containing data and information
from various sources. The data and information from such an experiment is typically
subdivided into four categories:

* Measured expression data values

* Sample metadata

* Microarray feature metadata

» Descriptions of experiment methods and conditions

In MATLAB, you can represent all the previous data and information in an ExpressionSet
object, which typically contains the following objects:

* One ExptData object containing expression values from a microarray experiment in
one or more DataMatrix objects

* One MetaData object containing sample metadata in two dataset arrays

* One MetaData object containing feature metadata in two dataset arrays

* One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its component
objects.

Managing Gene Expression Data in Objects

ExpressionSet object

DataMatrix object DataMatrix object

Each element (DataMatrix object) in the ExpressionSet object has an element name. Also,
there is always one DataMatrix object whose element name is Expressions.

4 Microarray Analysis

4-4

An ExpressionSet object lets you store, manage, and subset the data from a microarray
gene expression experiment. An ExpressionSet object includes properties and methods
that let you access, retrieve, and change data, metadata, and other information about the
microarray experiment. These properties and methods are useful to view and analyze the
data. For a list of the properties and methods, see ExpressionSet class.

To learn more about constructing and using objects for microarray gene expression data
and information, see:

“Representing Expression Data Values in DataMatrix Objects” on page 4-5
“Representing Expression Data Values in ExptData Objects” on page 4-11
“Representing Sample and Feature Metadata in MetaData Objects” on page 4-15
“Representing Experiment Information in a MIAME Object” on page 4-21
“Representing All Data in an ExpressionSet Object” on page 4-25

Representing Expression Data Values in DataMatrix Objects

Representing Expression Data Values in DataMatrix
Objects

In this section...

“Overview of DataMatrix Objects” on page 4-5
“Constructing DataMatrix Objects” on page 4-6
“Getting and Setting Properties of a DataMatrix Object” on page 4-6

“Accessing Data in DataMatrix Objects” on page 4-7

Overview of DataMatrix Objects

The toolbox includes functions, objects, and methods for creating, storing, and accessing
microarray data.

The object constructor function, DataMatrix, lets you create a DataMatrix object to
encapsulate data and metadata (row and column names) from a microarray experiment. A
DataMatrix object stores experimental data in a matrix, with rows typically corresponding
to gene names or probe identifiers, and columns typically corresponding to sample
identifiers. A DataMatrix object also stores metadata, including the gene names or probe
identifiers (as the row names) and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the same way you
reference data in a MATLAB array, that is, by using linear or logical indexing. Alternately,
you can reference this experimental data by gene (probe) identifiers and sample
identifiers. Indexing by these identifiers lets you quickly and conveniently access subsets
of the data without having to maintain additional index arrays.

Many MATLAB operators and arithmetic functions are available to DataMatrix objects by
means of methods. These methods let you modify, combine, compare, analyze, plot, and
access information from DataMatrix objects. Additionally, you can easily extend the
functionality by using general element-wise functions, dmarrayfun and dmbsxfun, and
by manually accessing the properties of a DataMatrix object.

Note For tables describing the properties and methods of a DataMatrix object, see the
DataMatrix object reference page.

4 Microarray Analysis

4-6

Constructing DataMatrix Objects

1

Load the MAT-ile, provided with the Bioinformatics Toolbox software, that contains
yeast data. This MAT-file includes three variables: yeastvalues, a 614-by-7 matrix
of gene expression data, genes, a cell array of 614 GenBank accession numbers for
labeling the rows in yeastvalues, and times, a 1-by-7 vector of time values for
labeling the columns in yeastvalues.

load filteredyeastdata

Create variables to contain a subset of the data, specifically the first five rows and
first four columns of the yeastvalues matrix, the genes cell array, and the times
vector.

yeastvalues = yeastvalues(1:5,1:4);

genes = genes(1:5,:);

times times(1:4);

Import the microarray object package so that the DataMat rix constructor function
will be available.

import bioma.data.*

Use the DataMat rix constructor function to create a small DataMatrix object from
the gene expression data.

dmo = DataMatrix(yeastvalues,genes,times)

dmo =
0 9.5 11.5 13.5
SS DNA -0.131 1.699 -0.026 0.365
YALOO3W 0.305 0.146 -0.129 -0.444
YALO12W 0.157 0.175 0.467 -0.379
YALO26C 0.246 0.796 0.384 0.981
YALO34C -0.235 0.487 -0.184 -0.669

Getting and Setting Properties of a DataMatrix Object

You use the get and set methods to retrieve and set properties of a DataMatrix object.

1

Use the get method to display the properties of the DataMatrix object, dmo.

get(dmo)
Name: "'

Representing Expression Data Values in DataMatrix Objects

RowNames:
ColNames:
NRows:

NCols:

NDims:
ElementClass:

dmo

get(dmo)
Name:
RowNames:
ColNames:
NRows:
NCols:
NDims:
ElementClass:

{5x1 cell}

{ o' ' 9.5
5

4

2

'double’

'11.5' '13.5'}

Use the set method to specify a name for the DataMatrix object, dmo.

set(dmo, 'Name', 'MyDMObject');
Use the get method again to display the properties of the DataMatrix object, dmo.

'MyDMObject'
{5x1 cell}

{' o' ' 9.5
5

4

2

'double’

'11.5' '13.5'}

Note For a description of all properties of a DataMatrix object, see the DataMatrix object
reference page.

Accessing Data in DataMatrix Objects

DataMatrix objects support the following types of indexing to extract, assign, and delete
data:

* Parenthesis () indexing
* Dot . indexing

Parentheses () Indexing

Use parenthesis indexing to extract a subset of the data in dmo and assign it to a new
DataMatrix object dmo?2:

dmo2 = dmo(1:5,2:3)
dmo2 =
9.5 11.5
SS DNA 1.699 -0.026
YALOO3W 0.146 -0.129

4 Microarray Analysis

4-8

YALO12W 0.175 0.467
YALO26C 0.796 0.384
YALO34C 0.487 -0.184

Use parenthesis indexing to extract a subset of the data using row names and column
names, and assign it to a new DataMatrix object dmo3:

dmo3 = dmo({'SS DNA', 'YALO12W', 'YALO34C'}, '11.5")

dmo3 =
11.5
SS DNA -0.026
YALO12W 0.467
YALO34C -0.184

Note If you use a cell array of row names or column names to index into a DataMatrix
object, the names must be unique, even though the row names or column names within
the DataMatrix object are not unique.

Use parenthesis indexing to assign new data to a subset of the elements in dmo2:

dmo2({'SS DNA', 'YALOO3W'}, 1:2) = [1.700 -0.030; 0.150 -0.130]
dmo2 =

9.5 11.5
SS DNA 1.7 -0.03
YALOO3W 0.15 -0.13
YALO12W 0.175 0.467
YALO26C 0.796 0.384
YALO34C 0.487 -0.184

Use parenthesis indexing to delete a subset of the data in dmo2:

dmo2({'SS DNA', 'YALOO3W'}, :) = []

dmo2 =
9.5 11.5
YALO12W 0.175 0.467
YALO26C 0.796 0.384
YALO34C 0.487 -0.184

Representing Expression Data Values in DataMatrix Objects

Dot . Indexing

Note In the following examples, notice that when using dot indexing with DataMatrix
objects, you specify all rows or all columns using a colon within single quotation marks,

(":').

Use dot indexing to extract the data from the 11.5 column only of dmo:

timeValues dmo.(':')('11.5")

timeValues =
-0.0260
-0.1290
0.4670
0.3840
-0.1840

Use dot indexing to assign new data to a subset of the elements in dmo:

dmo.(1:2)("':"') =7

dmo =
0 9.5 11.5 13.5
SS DNA 7 7 7 7
YALOO3W 7 7 7 7
YALO12W 0.157 0.175 0.467 -0.379
YALO26C 0.246 0.796 0.384 0.981
YALO34C -0.235 0.487 -0.184 -0.669

Use dot indexing to delete an entire variable from dmo:
dmo.YALO34C = []

dmo =
0 9.5 11.5 13.5
SS DNA 7 7 7 7
YALOO3W 7 7 7 7
YALO12W 0.157 0.175 0.467 -0.379
YALO26C 0.246 0.796 0.384 0.981

Use dot indexing to delete two columns from dmo:

dmo.(':"')(2:3)=[1]

4-9

4 Microarray Analysis

4-10

dmo

SS DNA

YALOO3W
YALO12W
YALO26C

0.157
0.246

-0.379
0.981

Representing Expression Data Values in ExptData Objects

Representing Expression Data Values in ExptData
Objects

In this section...

“Overview of ExptData Objects” on page 4-11
“Constructing ExptData Objects” on page 4-12

“Using Properties of an ExptData Object” on page 4-12
“Using Methods of an ExptData Object” on page 4-13

“References” on page 4-14

Overview of ExptData Objects

You can use an ExptData object to store expression values from a microarray experiment.
An ExprData object stores the data values in one or more DataMatrix objects, each having
the same row names (feature names) and column names (sample names). Each element
(DataMatrix object) in the ExptData object has an element name.

The following illustrates a small DataMatrix object containing expression values from
three samples (columns) and seven features (rows):

A B C
100001_at 2.26 20.14 31.66
100002_at 158.86 236.25 206.27
100003_at 68.11 105.45 82.92
100004 _at 74.32 96.68 84.87
100005_at 75.05 53.17 57.94
100006_at 80.36 42.89 77.21

100007 at 216.64 191.32 219.48

An ExptData object lets you store, manage, and subset the data values from a microarray
experiment. An ExptData object includes properties and methods that let you access,
retrieve, and change data values from a microarray experiment. These properties and
methods are useful to view and analyze the data. For a list of the properties and methods,
see ExptData class.

4-11

4 Microarray Analysis

4-12

Constructing ExptData Objects

The mouseExprsData. txt file used in this example contains data from Hovatta et al.,
2005.

1 Import the bioma.data package so that the DataMatrix and ExptData
constructor functions are available.

import bioma.data.*

2 Usethe DataMatrix constructor function to create a DataMatrix object from the
gene expression data in the mouseExprsData. txt file. This file contains a table of
expression values and metadata (sample and feature names) from a microarray
experiment done using the Affymetrix MGU74Av2 GeneChip array. There are 26
sample names (A through Z), and 500 feature names (probe set names).

dmObj = DataMatrix('File', 'mouseExprsData.txt');

3 Use the ExptData constructor function to create an ExptData object from the
DataMatrix object.
EDObj = ExptData(dmObj);

4 Display information about the ExptData object, EDObJ.

EDObj

Experiment Data:
500 features, 26 samples
1 elements
Element names: Elmtl

Note For complete information on constructing ExptData objects, see ExptData class.

Using Properties of an ExptData Object
To access properties of an ExptData object, use the following syntax:
objectname.propertyname

For example, to determine the number of elements (DataMatrix objects) in an ExptData
object:

Representing Expression Data Values in ExptData Objects

EDObj.NElements
ans =
1
To set properties of an ExptData object, use the following syntax:
objectname.propertyname = propertyvalue
For example, to set the Name property of an ExptData object:

EDObj .Name = 'MyExptDataObject’

Note Property names are case sensitive. For a list and description of all properties of an
ExptData object, see ExptData class.

Using Methods of an ExptData Object

To use methods of an ExptData object, use either of the following syntaxes:
objectname .methodname
or
methodname (objectname)
For example, to retrieve the sample names from an ExptData object:
EDObj .sampleNames
Columns 1 through 9
'A' ‘B’ 'C' ‘D' 'E' 'F' 'G' 'H' ‘T
To return the size of an ExptData object:
size(EDObj)
ans =

500 26

4-13

4 Microarray Analysis

Note For a complete list of methods of an ExptData object, see ExptData class.

References

[1] Hovatta, I., Tennant, R S., Helton, R., et al. (2005). Glyoxalase 1 and glutathione
reductase 1 regulate anxiety in mice. Nature 438, 662-666.

4-14

Representing Sample and Feature Metadata in MetaData Objects

Representing Sample and Feature Metadata in
MetaData Objects

In this section...

“Overview of MetaData Objects” on page 4-15
“Constructing MetaData Objects” on page 4-16
“Using Properties of a MetaData Object” on page 4-19
“Using Methods of a MetaData Object” on page 4-19

Overview of MetaData Objects

You can store either sample or feature metadata from a microarray gene expression
experiment in a MetaData object. The metadata consists of variable names, for example,
related to either samples or microarray features, along with descriptions and values for
the variables.

A MetaData object stores the metadata in two dataset arrays:

* Values dataset array — A dataset array containing the measured value of each
variable per sample or feature. In this dataset array, the columns correspond to
variables and rows correspond to either samples or features. The number and names
of the columns in this dataset array must match the number and names of the rows in
the Descriptions dataset array. If this dataset array contains sample metadata, then
the number and names of the rows (samples) must match the number and names of
the columns in the DataMatrix objects in the same ExpressionSet object. If this dataset
array contains feature metadata, then the number and names of the rows (features)
must match the number and names of the rows in the DataMatrix objects in the same
ExpressionSet object.

* Descriptions dataset array — A dataset array containing a list of the variable names
and their descriptions. In this dataset array, each row corresponds to a variable. The
row names are the variable names, and a column, named VariableDescription,
contains a description of the variable. The number and names of the rows in the
Descriptions dataset array must match the number and names of the columns in the
Values dataset array.

The following illustrates a dataset array containing the measured value of each variable
per sample or feature:

4-15

4 Microarray Analysis

4-16

MMoO O m@>

Gender
'Male'
'Male'
'Male'
'Male'
'Male'
'Male'

Age Type Strain Source

8 'Wild type’ '129S6/SvEvTac' 'amygdala’
8 'Wild type’ '129S6/SvEvTac' 'amygdala’
8 'Wild type’ '129S6/SvEvTac' 'amygdala’
8 'Wild type’ 'A/J ! 'amygdala’
8 'Wild type’ 'A/J ! 'amygdala’
8 'Wild type’ 'C57BL/6J ' 'amygdala’

The following illustrates a dataset array containing a list of the variable names and their
descriptions:

id
Gender
Age
Type
Strain
Source

VariableDescription

'Sample identifier!

'Gender of the mouse in study'

'"The number of weeks since mouse birth'
'Genetic characters'

'The mouse strain'

'The tissue source for RNA collection'

A MetaData object lets you store, manage, and subset the metadata from a microarray
experiment. A MetaData object includes properties and methods that let you access,
retrieve, and change metadata from a microarray experiment. These properties and
methods are useful to view and analyze the metadata. For a list of the properties and
methods, see MetaData class

Constructing MetaData Objects

Constructing a MetaData Object from Two dataset Arrays

1 Import the bioma.data package so that the MetaData constructor function is
available.

import bioma.data.*

2 Load some sample data, which includes Fisher’s iris data of 5 measurements on a
sample of 150 irises.

load fisheriris

Create a dataset array from some of Fisher's iris data. The dataset array will contain

750 measured values, one for each of 150 samples (iris replicates) at five variables
(species, SL, SW, PL, PW). In this dataset array, the rows correspond to samples, and
the columns correspond to variables.

Representing Sample and Feature Metadata in MetaData Objects

irisValues = dataset({nominal(species), 'species'},

{meas, 'SL', 'SW', 'PL', 'PW'});
Create another dataset array containing a list of the variable names and their
descriptions. This dataset array will contain five rows, each corresponding to the five
variables: species, SL, SW, PL, and PW. The first column will contain the variable
name. The second column will have a column header of VariableDescription and
contain a description of the variable.

% Create 5-by-1 cell array of description text for the variables
varDesc = {'Iris species', 'Sepal Length', 'Sepal Width',
'Petal Length', 'Petal Width'}';
% Create the dataset array from the variable descriptions
irisVarDesc = dataset(varDesc,
'ObsNames', {'species','SL','SW','PL','PW'},
'VarNames', {'VariableDescription'})

irisVarDesc =
VariableDescription
species 'Iris species'
SL ‘Sepal Length'
SW ‘Sepal Width'
PL 'Petal Length'
PW 'Petal Width'

Create a MetaData object from the two dataset arrays.

MDObjl = MetaData(irisValues, irisVarDesc);

Constructing a MetaData Object from a Text File

1

Import the bioma.datapackage so that the MetaData constructor function is
available.

import bioma.data.*

View the mouseSampleData. txt file included with the Bioinformatics Toolbox
software.

Note that this text file contains two tables. One table contains 130 measured values,
one for each of 26 samples (A through Z) at five variables (Gender, Age, Type, Strain,
and Source). In this table, the rows correspond to samples, and the columns
correspond to variables. The second table has lines prefaced by the # symbol. It
contains five rows, each corresponding to the five variables: Gender, Age, Type,
Strain, and Source. The first column contains the variable name. The second column

4-17

4 Microarray Analysis

has a column header of VariableDescription and contains a description of the
variable.

id: Sample identifier

Gender: Gender of the mouse in study

Age: The number of weeks since mouse birth

Type: Genetic characters

Strain: The mouse strain

Source: The tissue source for RNA collection
ID Gender Age Type Strain Source

A Male 8 Wild type 129S6/SvEvTac amygdala

B Male 8 Wild type 129S6/SvEvTac amygdala

C Male 8 Wild type 129S6/SvEvTac amygdala

D Male 8 Wild type A/] amygdala

E Male 8 Wild type A/] amygdala

F Male 8 Wild type C57BL/6J amygdala

G Male 8 Wild type C57BL/6J amygdala

H Male 8 Wild type 129S6/SvEvTac cingulate cortex
I Male 8 Wild type 129S6/SvEvTac cingulate cortex
J Male 8 Wild type A/] cingulate cortex

K Male 8 Wild type A/] cingulate cortex

L Male 8 Wild type A/] cingulate cortex

M Male 8 Wild type C57BL/6J cingulate cortex
N Male 8 Wild type C57BL/6J cingulate cortex
0 Male 8 Wild type 129S6/SvEvTac hippocampus
P Male 8 Wild type 129S6/SvEvTac hippocampus
Q Male 8 Wild type A/] hippocampus

R Male 8 Wild type A/] hippocampus

S Male 8 Wild type C57BL/6J hippocampus

T Male 8 Wild type C57BL/6J4 hippocampus

U Male 8 Wild type 129S6/SvEvTac hypothalamus
v Male 8 Wild type 129S6/SvEvTac hypothalamus
W Male 8 Wild type A/] hypothalamus

X Male 8 Wild type A/] hypothalamus

Y Male 8 Wild type C57BL/6J hypothalamus

z Male 8 Wild type C57BL/6J hypothalamus

3 Create a MetaData object from the metadata in the mouseSampleData. txt file.
MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#')
Sample Names:
A, B, ...,Z (26 total)

Variable Names and Meta Information:

VariableDescription
Gender ' Gender of the mouse in study'

4-18

Representing Sample and Feature Metadata in MetaData Objects

Age ' The number of weeks since mouse birth'
Type ' Genetic characters'

Strain ' The mouse strain'

Source ' The tissue source for RNA collection'

For complete information on constructing MetaData objects, see MetaData class.

Using Properties of a MetaData Object

To access properties of a MetaData object, use the following syntax:
objectname.propertyname
For example, to determine the number of variables in a MetaData object:
MDObj2.NVariables
ans =

5
To set properties of a MetaData object, use the following syntax:
objectname.propertyname = propertyvalue
For example, to set the Description property of a MetaData object:

MDObjl.Description = 'This is my MetaData object for my sample metadata'

Note Property names are case sensitive. For a list and description of all properties of a
MetaData object, see MetaData class.

Using Methods of a MetaData Object

To use methods of a MetaData object, use either of the following syntaxes:

objectname .methodname

or

methodname (objectname)

4-19

4 Microarray Analysis

4-20

For example, to access the dataset array in a MetaData object that contains the variable

values:

MDObj2.variableValues;

To access the dataset array of a MetaData object that contains the variable descriptions:

variableDesc(MDObj2)
ans =
VariableDescription
Gender ' Gender of the mouse in study'
Age ' The number of weeks since mouse birth'
Type ' Genetic characters'
Strain ' The mouse strain'
Source ' The tissue source for RNA collection'

Note For a complete list of methods of a MetaData object, see MetaData class.

Representing Experiment Information in a MIAME Object

Representing Experiment Information in a MIAME Object

In this section...

“Overview of MIAME Objects” on page 4-21
“Constructing MIAME Objects” on page 4-21
“Using Properties of a MIAME Object” on page 4-23
“Using Methods of a MIAME Object” on page 4-24

Overview of MIAME Objects

You can store information about experimental methods and conditions from a microarray
gene expression experiment in a MIAME object. It loosely follows the Minimum
Information About a Microarray Experiment (MIAME) specification. It can include
information about:

* Experiment design

* Microarrays used

* Samples used

* Sample preparation and labeling

* Hybridization procedures and parameters

* Normalization controls

* Preprocessing information

» Data processing specifications

A MIAME object includes properties and methods that let you access, retrieve, and
change experiment information related to a microarray experiment. These properties and

methods are useful to view and analyze the information. For a list of the properties and
methods, see MIAME class.

Constructing MIAME Objects

For complete information on constructing MIAME objects, see MIAME class.

4-21

4 Microarray Analysis

4-22

Constructing a MIAME Object from a GEO Structure

1

Import the bioma.data package so that the MIAME constructor function is available.

import bioma.data.*

Use the getgeodata function to return a MATLAB structure containing Gene
Expression Omnibus (GEQ) Series data related to accession number GSE4616.

geoStruct = getgeodata('GSE4616')

geoStruct

Header: [1x1 struct]
Data: [12488x12 bioma.data.DataMatrix]

Use the MIAME constructor function to create a MIAME object from the structure.

MIAMEObj1l = MIAME(geoStruct);
Display information about the MIAME object, MIAMEObj.

MIAMEObj1
MIAMEObj1 =

Experiment Description:
Author name: Mika,,Silvennoinen
Riikka, ,KivelAx
Maarit,,Lehti
Anna-Maria,,Touvras
Jyrki, ,Komulainen
Veikko, ,Vihko
Heikki, ,Kainulainen
Laboratory: LIKES - Research Center
Contact information: Mika,,Silvennoinen
URL:
PubMedIDs: 17003243
Abstract: A 90 word abstract is available. Use the Abstract property.
Experiment Design: A 234 word summary is available. Use the ExptDesign property.
Other notes:
[1x80 char]

Constructing a MIAME Object from Properties

1

Import the bioma.data package so that theMIAME constructor function is available.

import bioma.data.*

Use the MIAME constructor function to create a MIAME object using individual
properties.

Representing Experiment Information in a MIAME Object

MIAMEObj2 = MIAME('investigator', 'Jane Researcher',...
'lab', 'One Bioinformatics Laboratory',...
'contact', 'jresearcher@lab.not.exist',...
‘url', 'www.lab.not.exist',...
'title', 'Normal vs. Diseased Experiment',...
'abstract', 'Example of using expression data',...
'other', {'Notes:Created from a text file.'});

3 Display information about the MIAME object, MIAMEObj 2.
MIAMEObj2
MIAMEObj2 =

Experiment Description:
Author name: Jane Researcher
Laboratory: One Bioinformatics Laboratory
Contact information: jresearcher@lab.not.exist
URL: www.lab.not.exist
PubMedIDs:
Abstract: A 4 word abstract is available. Use the Abstract property.
No experiment design summary available.
Other notes:
'Notes:Created from a text file.'

Using Properties of a MIAME Object

To access properties of a MIAME object, use the following syntax:
objectname.propertyname

For example, to retrieve the PubMed identifier of publications related to a MIAME object:
MIAMEObj1.PubMedID

ans =

17003243

To set properties of a MIAME object, use the following syntax:
objectname.propertyname = propertyvalue

For example, to set the Laboratory property of a MIAME object:
MIAMEObjl.Laboratory = 'XYZ Lab'

Note Property names are case sensitive. For a list and description of all properties of a
MIAME object, see MIAME class.

4-23

4 Microarray Analysis

Using Methods of a MIAME Object

To use methods of a MIAME object, use either of the following syntaxes:
objectname.methodname

or

methodname (objectname)

For example, to determine if a MIAME object is empty:
MIAMEObj1l.isempty

ans =

0

Note For a complete list of methods of a MIAME object, see MIAME class.

4-24

Representing All Data in an ExpressionSet Object

Representing All Data in an ExpressionSet Object

In this section...

“Overview of ExpressionSet Objects” on page 4-25
“Constructing ExpressionSet Objects” on page 4-27

“Using Properties of an ExpressionSet Object” on page 4-28
“Using Methods of an ExpressionSet Object” on page 4-28

Overview of ExpressionSet Objects

You can store all microarray experiment data and information in one object by assembling
the following into an ExpressionSet object:

* One ExptData object containing expression values from a microarray experiment in
one or more DataMatrix objects

* One MetaData object containing sample metadata in two dataset arrays

* One MetaData object containing feature metadata in two dataset arrays

* One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its component
objects.

4-25

4 Microarray Analysis

ExpressionSet object

DataMatrix object DataMatrix object

Each element (DataMatrix object) in the ExpressionSet object has an element name. Also,
there is always one DataMatrix object whose element name is Expressions.

4-26

Representing All Data in an ExpressionSet Object

An ExpressionSet object lets you store, manage, and subset the data from a microarray
gene expression experiment. An ExpressionSet object includes properties and methods
that let you access, retrieve, and change data, metadata, and other information about the
microarray experiment. These properties and methods are useful to view and analyze the
data. For a list of the properties and methods, see ExpressionSet class.

Constructing ExpressionSet Objects

Note The following procedure assumes you have executed the example code in the
previous sections:

“Representing Expression Data Values in ExptData Objects” on page 4-11
“Representing Sample and Feature Metadata in MetaData Objects” on page 4-15
“Representing Experiment Information in a MIAME Object” on page 4-21

Import the bioma package so that the ExpressionSet constructor function is
available.

import bioma.*

Construct an ExpressionSet object from EDObj, an ExptData object, MDObj2, a
MetaData object containing sample variable information, and MIAMEObj, a MIAME
object.

ESObj = ExpressionSet(EDObj, 'SData', MDObj2, 'EInfo', MIAMEObjl);
Display information about the ExpressionSet object, ESObj.

ESObj

ExpressionSet
Experiment Data: 500 features, 26 samples
Element names: Expressions
Sample Data:
Sample names: A, B, ...,Z (26 total)
Sample variable names and meta information:
Gender: Gender of the mouse in study
Age: The number of weeks since mouse birth
Type: Genetic characters
Strain: The mouse strain
Source: The tissue source for RNA collection

4-27

4 Microarray Analysis

4-28

Feature Data: none
Experiment Information: use 'exptInfo(obj)'

For complete information on constructing ExpressionSet objects, see ExpressionSet class.

Using Properties of an ExpressionSet Object

To access properties of an ExpressionSet object, use the following syntax:
objectname.propertyname

For example, to determine the number of samples in an ExpressionSet object:
ESObj .NSamples

ans =

26

Note Property names are case sensitive. For a list and description of all properties of an
ExpressionSet object, see ExpressionSet class.

Using Methods of an ExpressionSet Object
To use methods of an ExpressionSet object, use either of the following syntaxes:
objectname.methodname
or
methodname (objectname)
For example, to retrieve the sample variable names from an ExpressionSet object:
ESObj .sampleVarNames
ans =
'Gender’' 'Age’ 'Type' 'Strain' 'Source'

To retrieve the experiment information contained in an ExpressionSet object:

Representing All Data in an ExpressionSet Object

exptInfo(ESObj)
ans =

Experiment description
Author name: Mika,,Silvennoinen
Riikka, ,KivelA=
Maarit,,Lehti
Anna-Maria, ,Touvras
Jyrki, ,Komulainen
Veikko, ,Vihko
Heikki, ,Kainulainen
Laboratory: XYZ Lab
Contact information: Mika,,Silvennoinen
URL:
PubMedIDs: 17003243
Abstract: A 90 word abstract is available Use the Abstract property.
Experiment Design: A 234 word summary is available Use the ExptDesign property.
Other notes:
[1x80 char]

Note For a complete list of methods of an ExpressionSet object, see ExpressionSet class.

4-29

4 Microarray Analysis

Visualizing Microarray Images

4-30

In this section...

“Overview of the Mouse Example” on page 4-30
“Exploring the Microarray Data Set” on page 4-31
“Spatial Images of Microarray Data” on page 4-33
“Statistics of the Microarrays” on page 4-41

“Scatter Plots of Microarray Data” on page 4-43

Overview of the Mouse Example

This example looks at the various ways to visualize microarray data. The data comes from
a pharmacological model of Parkinson's disease (PD) using a mouse brain. The microarray
data for this example is from Brown, V.M., Ossadtchi, A., Khan, A.H., Yee, S., Lacan, G.,
Melega, W.P, Cherry, S.R., Leahy, R.M., and Smith, D.].; "Multiplex three dimensional
brain gene expression mapping in a mouse model of Parkinson's disease"; Genome
Research 12(6): 868-884 (2002).

The microarray data used in this example is available in a Web supplement to the paper
by Brown et al. and in the file mouse_alpd.gpr included with the Bioinformatics Toolbox
software.

http://labs.pharmacology.ucla.edu/smithlab/genome multiplex/

The microarray data is also available on the Gene Expression Omnibus Web site at

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

The GenePix GPR-formatted file mouse alpd.gpr contains the data for one of the
microarrays used in the study. This is data from voxel A1l of the brain of a mouse in which
a pharmacological model of Parkinson's disease (PD) was induced using
methamphetamine. The voxel sample was labeled with Cy3 (green) and the control, RNA
from a total (not voxelated) normal mouse brain, was labeled with Cy5 (red). GPR
formatted files provide a large amount of information about the array, including the mean,
median, and standard deviation of the foreground and background intensities of each spot
at the 635 nm wavelength (the red, Cy5 channel) and the 532 nm wavelength (the green,
Cy3 channel).

http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

Visualizing Microarray Images

Exploring the Microarray Data Set

This procedure illustrates how to import data from the Web into the MATLAB
environment, using data from a study about gene expression in mouse brains as an
example. See “Overview of the Mouse Example” on page 4-30.

1

Read data from a file into a MATLAB structure. For example, in the MATLAB
Command Window, type

pd = gprread('mouse _alpd.gpr')
Information about the structure displays in the MATLAB Command Window:

pd =
Header: [1x1 struct]
Data: [9504x38 double]
Blocks: [9504x1 double]
Columns: [9504x1 double]
Rows: [9504x1 double]
Names: {9504x1 cell}
IDs: {9504x1 cell}
ColumnNames: {38x1 cell}
Indices: [132x72 double]
Shape: [1x1 struct]

Access the fields of a structure using StructureName. FieldName. For example,
you can access the field ColumnNames of the structure pd by typing

pd.ColumnNames

The column names are shown below.

ans =
Y
y
'Dia.’
'F635 Median'
'F635 Mean'
'F635 SD'
'B635 Median'
'B635 Mean'
'B635 SD'
'% > B635+1SD'
'% > B635+2SD'
'F635 % Sat.'

4-31

4 Microarray Analysis

'F532 Median'
'F532 Mean'

'F532 SD'

'B532 Median'
'B532 Mean'

'B532 SD'

'% > B532+1SD'

'% > B532+2SD'
'F532 % Sat.'
'Ratio of Medians'
'Ratio of Means'
'Median of Ratios'
'Mean of Ratios'
'Ratios SD'

'Rgn Ratio'

‘Rgn R2%'

'F Pixels'

'B Pixels'

'Sum of Medians'
'Sum of Means'
'Log Ratio'

'F635 Median - B635'
'F532 Median - B532'
'F635 Mean - B635'
'F532 Mean - B532'
'Flags’

3 Access the names of the genes. For example, to list the first 20 gene names, type

pd.Names (1:20)

A list of the first 20 gene names is displayed:

ans =

'AA467053"
'AA388323"
'AA387625"
'AA474342'
'Myolb'

'AA473123"
'AA387579"
'AA387314"
'AA467571"

1 SpOp 1

4-32

Visualizing Microarray Images

'AA547022"
'AI508784"'
'AA413555"
'AA414733"

‘Sntal’
'AI414419'
'W14393"
'W10596"

Spatial Images of Microarray Data

This procedure illustrates how to visualize microarray data by plotting image maps. The
function maimage can take a microarray data structure and create a pseudocolor image
of the data arranged in the same order as the spots on the array. In other words, maimage
plots a spatial plot of the microarray.

This procedure uses data from a study of gene expression in mouse brains. For a list of
field names in the MATLAB structure pd, see “Exploring the Microarray Data Set” on
page 4-31.

1 Plot the median values for the red channel. For example, to plot data from the field
F635 Median, type

figure
maimage(pd, 'F635 Median')

The MATLAB software plots an image showing the median pixel values for the
foreground of the red (Cy5) channel.

4-33

4 Microarray Analysis

FE35 Median TN

2 Plot the median values for the green channel. For example, to plot data from the field
F532 Median, type

figure
maimage(pd, 'F532 Median')

The MATLAB software plots an image showing the median pixel values of the
foreground of the green (Cy3) channel.

4-34

Visualizing Microarray Images

F532 Median

Plot the median values for the red background. The field B635 Median shows the
median values for the background of the red channel.

figure
maimage(pd, 'B635 Median')

The MATLAB software plots an image for the background of the red channel. Notice
the very high background levels down the right side of the array.

4-35

4 Microarray Analysis

BE35 Median

2500

42000

41500

1000

&00

4 Plot the medial values for the green background. The field B532 Median shows the
median values for the background of the green channel.

figure
maimage(pd, 'B532 Median')

The MATLAB software plots an image for the background of the green channel.

4-36

Visualizing Microarray Images

B532 Median

400

- 350

- 300

- 250

200

150

The first array was for the Parkinson's disease model mouse. Now read in the data for
the same brain voxel but for the untreated control mouse. In this case, the voxel
sample was labeled with Cy3 and the control, total brain (not voxelated), was labeled

with Cyb5.

wt = gprread('mouse_alwt.gpr')

The MATLAB software creates a structure and displays information about the

structure.

wt =

Header:
Data:
Blocks:
Columns:
Rows:
Names:
IDs:

[1x1 struct]
[9504x38 double]
[9504x1 double]
[9504x1 double]
[9504x1 double]
{9504x1 cell}
{9504x1 cell}

4-37

4 Microarray Analysis

ColumnNames: {38x1 cell}
Indices: [132x72 double]
Shape: [1x1 struct]

6 Use the function maimage to show pseudocolor images of the foreground and
background. You can use the function subplot to put all the plots onto one figure.

figure

subplot(2,2,1);
maimage(wt, 'F635 Median')
subplot(2,2,2);
maimage(wt, 'F532 Median')
subplot(2,2,3);
maimage(wt, 'B635 Median')
subplot(2,2,4);
maimage(wt, 'B532 Median')

The MATLAB software plots the images.

FE35 Median TiM F&32 Median nt

—= R W = MmO

BR35 Median B532 Median

2600
2000
1500
1000
500

7 Ifyou look at the scale for the background images, you will notice that the
background levels are much higher than those for the PD mouse and there appears to

4-38

Visualizing Microarray Images

be something nonrandom affecting the background of the Cy3 channel of this slide.
Changing the colormap can sometimes provide more insight into what is going on in
pseudocolor plots. For more control over the color, try the colormapeditor
function.

colormap hot

The MATLAB software plots the images.

=

F&32 Median 1ot

—
=

FE35 Median

— k2) = oM
— b W k= M o =

BR35 Median B532 Median

2600
2000
1500
1000
500

The function maimage is a simple way to quickly create pseudocolor images of
microarray data. However if you want more control over plotting, it is easy to create
your own plots using the function imagesc.

First find the column number for the field of interest.
b532MedCol = find(strcmp(wt.ColumnNames, 'B532 Median'))
The MATLAB software displays:

b532MedCol =
16

4-39

4 Microarray Analysis

9 Extract that column from the field Data.

b532Data = wt.Data(:,b532MedCol);
10 Use the field Indices to index into the Data.

figure

subplot(1,2,1);
imagesc(b532Data(wt.Indices))
axis image

colorbar

title('B532 Median')

The MATLAB software plots the image.

B532 Median

20

40 000

B0
1500

80

1000
100

120 &00

20 40 B0
11 Bound the intensities of the background plot to give more contrast in the image.

maskedData = b532Data;
maskedData(b532Data<500) = 500;
maskedData(b532Data>2000) = 2000;

4-40

Visualizing Microarray Images

subplot(1,2,2);
imagesc(maskedData(wt.Indices))
axis image

colorbar

title('Enhanced B532 Median')

The MATLAB software plots the images.

B532 Meadian Enhanced B532 Median
___ _ 8 _

1500
20

1600
40

1400
B0

1200
Gl

1000 1000

100

120

0 40 GO o0 40 60

Statistics of the Microarrays

This procedure illustrates how to visualize distributions in microarray data. You can use
the function maboxplot to look at the distribution of data in each of the blocks.

1 Inthe MATLAB Command Window, type

figure

subplot(2,1,1)

maboxplot(pd, 'F532 Median', 'title', 'Parkinson''s Disease Model Mouse')
subplot(2,1,2)

maboxplot(pd, 'B532 Median', 'title', 'Parkinson''s Disease Model Mouse')

4-41

4 Microarray Analysis

figure

subplot(2,1,1)

maboxplot(wt, 'F532 Median', 'title', 'Untreated Mouse')
subplot(2,1,2)

maboxplot(wt, 'B532 Median', 'title', 'Untreated Mouse')

The MATLAB software plots the images.

« 10t Parkinson's Disease Maodel Mouse
+ T T T T T T T
3t N * + + +
5 + N + + + +
Z 2t + +
2 4 I + +
y L ¥
LR A §
n=E = = = =F =2 = =
1 1 1 1 1 1 1 1
1 2 3 4 5 B 7 g8
Block
Parkinson's Disease Maodel Mouse
T T T T T T +
400 +
g + L
T
2 300}
& F = %
& 200} == I
T = = @ =
1 - 1 1 1 1 1
1 2 3 5 =

BMCk

4-42

Visualizing Microarray Images

¥ 1|j4 Untreated Mouse
T T T T T + T T
B + i

c - +
= + +
= 4 % + + L -
=
B 2r i % i
[

1 2 3 4 5 g 7 a

Block
Untreated Mouse

- . 3 b1
Taoaoap bl

o
1

B532 Median

2 Compare the plots.

From the box plots you can clearly see the spatial effects in the background
intensities. Blocks numbers 1, 3, 5, and 7 are on the left side of the arrays, and
numbers 2, 4, 6, and 8 are on the right side. The data must be normalized to remove

this spatial bias.

Scatter Plots of Microarray Data

This procedure illustrates how to visualize expression levels in microarray data. There are
two columns in the microarray data structure labeled 'F635 Median - B635' and
'F532 Median - B532'. These columns are the differences between the median
foreground and the median background for the 635 nm channel and 532 nm channel
respectively. These give a measure of the actual expression levels, although since the data
must first be normalized to remove spatial bias in the background, you should be careful
about using these values without further normalization. However, in this example no
normalization is performed.

1 Rather than working with data in a larger structure, it is often easier to extract the
column numbers and data into separate variables.

4-43

4 Microarray Analysis

4-44

cy5DataCol = find(strcmp(wt.ColumnNames, 'F635 Median - B635'))
cy3DataCol = find(strcmp(wt.ColumnNames, 'F532 Median - B532'))
cy5Data = pd.Data(:,cy5DataCol);
cy3Data = pd.Data(:,cy3DataCol);

The MATLAB software displays:

cy5DataCol
34

cy3DataCol
35

A simple way to compare the two channels is with a loglog plot. The function
maloglog is used to do this. Points that are above the diagonal in this plot
correspond to genes that have higher expression levels in the Al voxel than in the
brain as a whole.

figure
maloglog(cy5Data, cy3Data)
xlabel('F635 Median - B635 (Control)

")
ylabel('F532 Median - B532 (Voxel Al)'

)i
The MATLAB software displays the following messages and plots the images.

Warning: Zero values are ignored

(Type "warning off Bioinfo:MaloglogZeroValues" to suppress
this warning.)

Warning: Negative values are ignored.

(Type "warning off Bioinfo:MaloglogNegativeValues" to suppress
this warning.)

Visualizing Microarray Images

T T T T T T T T T TTTTg T T T T TTIT] T T T T T T T T T TTTY

—
=

N
T ——TTTT

e

—
=
T

—
=

[
T —TT T

F532 Median - B332 Moxel Al)

—
]
1
I

10 10 10 10° 10
FE35 Median - BE3S (Contral)

4

Notice that this function gives some warnings about negative and zero elements. This
is because some of the values in the 'F635 Median - B635' and 'F532 Median

- B532"' columns are zero or even less than zero. Spots where this happened might
be bad spots or spots that failed to hybridize. Points with positive, but very small,
differences between foreground and background should also be considered to be bad
spots.

Disable the display of warnings by using the warning command. Although warnings
can be distracting, it is good practice to investigate why the warnings occurred
rather than simply to ignore them. There might be some systematic reason why they
are bad.

warnState = warning; % First save the current warning
state.
% Now turn off the two warnings.
warning('off', 'Bioinfo:MaloglogZeroValues');
warning('off', 'Bioinfo:MaloglogNegativeValues');
figure
maloglog(cy5Data, cy3Data) % Create the loglog plot

4-45

4 Microarray Analysis

4-46

warning(warnState); % Reset the warning state.
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel Al)');

The MATLAB software plots the image.

T T T T TTTI] T T T T TTTT] T T T T TTTT] T T T T TTTT] T T T TTTTg

10k

F532 Median - B332 Moxel Al)

—
=
|
TT

! 1 1 Ll il 1 L1 a1l ! L1l
10 10 10 10° 10
FGE35 Median - BE3S (Control)

4

An alternative to simply ignoring or disabling the warnings is to remove the bad spots
from the data set. You can do this by finding points where either the red or green
channel has values less than or equal to a threshold value. For example, use a
threshold value of 10.

threshold
badPoints

10;
(cy5Data <= threshold) | (cy3Data <= threshold);

The MATLAB software plots the image.

Visualizing Microarray Images

—
]
N
T

(%]

F532 Median - B532 Moxel Al)
=

—
[
T

L+
S
10 = ko Ll T |

10" 10° 10° 10*

FE35 Median - BE3S (Caontral)

You can then remove these points and redraw the loglog plot.

cySData(badPoints) = []; cy3Data(badPoints) = [];
figure

maloglog(cy5Data, cy3Data)

xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel Al)');

The MATLAB software plots the image.

4-47

4 Microarray Analysis

4-48

—
]
N
T

(%]

F532 Median - B532 Moxel Al)
=

—
[
T

L+
S
10 = ko Ll T |

10" 10° 10° 10*

FE35 Median - BE3S (Caontral)

This plot shows the distribution of points but does not give any indication about
which genes correspond to which points.

Add gene labels to the plot. Because some of the data points have been removed, the
corresponding gene IDs must also be removed from the data set before you can use
them. The simplest way to do that is wt.IDs(~badPoints).

maloglog(cy5Data, cy3Data, 'labels',wt.IDs(~badPoints), ...
'factorlines',?2)
xlabel('F635 Median - B635 (Control)

")
ylabel('F532 Median - B532 (Voxel Al)'

)
The MATLAB software plots the image.

Visualizing Microarray Images

—
=
=

F&32 Median - B532 MWoxel AT)
=

—
=
(5]

-]|:|1 +-§. ho L L-

10 10 10° 10*
FE35 Median - BE3S (Caontrol)

Try using the mouse to click some of the outlier points.

You will see the gene ID associated with the point. Most of the outliers are below the
y = X line. In fact, most of the points are below this line. Ideally the points should be
evenly distributed on either side of this line.

Normalize the points to evenly distribute them on either side of the line. Use the
function manorm to perform global mean normalization.

normcy5
normcy3

= mannorm(cy5Data);

= manorm(cy3Data);

If you plot the normalized data you will see that the points are more evenly
distributed about the y = x line.

figure

maloglog(normcy5,normcy3, ' labels',wt.IDs(~badPoints), ...
'factorlines',?2)

xlabel('F635 Median - B635 (Control)');

ylabel('F532 Median - B532 (Voxel Al)');

4-49

4 Microarray Analysis

The MATLAB software plots the image.

T T T T L ’_
LA,
10° S
% d
Rl .
=]
=]
n 4
Lr)
e]
10k 3
= 7
(=i} i
=]
[
=]
R
10]
S
10 e Lol Lol T | L
10° 1 10" 10 10

FBE35 Median - BE35 (Control)

9 The function mairplot is used to create an Intensity vs. Ratio plot for the
normalized data. This function works in the same way as the function maloglog.

figure
mairplot(normcy5,normcy3, 'labels',wt.IDs(~badPoints), ...
'factorlines',?2)

The MATLAB software plots the image.

4-50

Visualizing Microarray Images

1|:|_ T T T T

10

Ratin

10

1|:|'1 1 1 1 1
10" 10 10" 10" 10° 10*
Intensity

10 You can click the points in this plot to see the name of the gene associated with the
plot.

4-51

Phylogenetic Analysis

5 Phylogenetic Analysis

Using the Phylogenetic Tree App

5-2

In this section...

“Overview of the Phylogenetic Tree App” on page 5-2
“Opening the Phylogenetic Tree App” on page 5-2
“File Menu” on page 5-3

“Tools Menu” on page 5-15

“Window Menu” on page 5-24

“Help Menu” on page 5-24

Overview of the Phylogenetic Tree App

The Phylogenetic Tree app allows you to view, edit, format, and explore phylogenetic tree
data. With this app you can prune, reorder, rename branches, and explore distances. You
can also open or save Newick or ClustalW tree formatted files. The following sections give
a description of menu commands and features for creating publishable tree figures.

Opening the Phylogenetic Tree App

This section illustrates how to draw a phylogenetic tree from data in a phytree object or
a previously saved file.

The Phylogenetic Tree app can read data from Newick and ClustalW tree formatted files.

This procedure uses the phylogenetic tree data stored in the file pf00002.tree as an
example. The data was retrieved from the protein family (PFAM) Web database and saved
to a file using the accession number PFO0002 and the function gethmmtree.

1 Create a phytree object. For example, to create a phytree object from tree data in
the file pf00002. tree, type

tr = phytreeread('pf00002.tree')
The MATLAB software creates a phytree object.

Phylogenetic tree object with 33 leaves (32 branches)
2 View the phylogenetic tree using the app.

Using the Phylogenetic Tree App

phytreeviewer(tr)

Alternatively, click Phylogenetic Tree on the Apps tab.

Phylogenetic Tree 1 | =HNCE X

File Tools Window Help "
AR | cED T 2

1 QYHCE_RANRIM 26-382
YIPR1_RATM 40-397
WIPRE_CARALIM00-359

1 WIPRZ_HUMANM 23-382
1PACE_MOLISEM50-435
<+ SCTR_RABITA 35-391

1 073768_CARALIM 33-390
1 GHRHR_MOLISEM 26-383
1 PTHRZ_HUMAMNM 41-420
1 PTHR1_HUMAN 84-466
1 GLP2R_RATM 75-443

—+ GLRE_HUMAMNI138-407

1 GIPR_HUMAMNI134-399

41 GLP1R_RATM 41-409

1 DIHR_ACHDOM 30-393

1 DIHR_MAMNSER3-351

1 CRFR2_XEMNLAM15-368
1 CRFR1_RATIT16-370

1 CALRL_HUMAMNT38-391
1 CALCRE_RATI145-435
+5SEB1_CAEEL/MG4-436

41 CELR1_MOUSES2480-2723
1 CELR3_RAT/2534-2777
<1 CD97_MOUSEMZE-TTT
1 CDeT_HUMANMS44-793
<1 EMRT_HUMAMNMS29-851
4@ 7505_CAEEL/S48-799
+097302_BOVIMNITEI-1016
S LPHM3_BOWIMNIG42-1198
< BAIZ_HUMANST7-1197
< BAIT_HUMANS44-1191

1 GPRE4_HUMANGZ5-386
+MTH_DROMES211-480

1

&
&

Uﬂ[l oo uuuuu[]uuuuuuuuuuuuum
]

1
o 0.0s 0

1
1 015 02 025 03 035 04

File Menu

The File menu includes the standard commands for opening and closing a file, and it
includes commands to use phytree object data from the MATLAB Workspace. The File
menu commands are shown below.

5 Phylogenetic Analysis

u Phylogenetic Tree 1

File | Toocls Window Help

Mew Viewer...
Open...
Import frem Workspace...

Open Original in New Yiewer

Save As...

Print to Figure »
Export to New Viewer +
Export to Workspace »
Export Setup...

Print Preview...

Print... Ctrl+P
Exit

New Viewer Command

Use the New Viewer command to open tree data from a file into a second Phylogenetic
Tree viewer.

1 From the File menu, select New Viewer.

The Open A Phylogenetic Tree dialog box opens.

Using the Phylogenetic Tree App

2

u Cpen A Phylogen... | =

— Choose tree source;

i@ Import from workspace

Select phytree object:

(") Open phylogenetic tree file

g

Brows

ok | [Lconce]

L

Choose the source for a tree.

* MATLAB Workspace — Select the Import from Workspace options, and then

select a phytree object from the list.

* File — Select the Open phylogenetic tree file option, click the Browse button,
select a directory, select a file with the extension . tree, and then click Open. The
toolbox uses the file extension . tree for Newick-formatted files, but you can use

any Newick-formatted file with any extension.

3-5

5 Phylogenetic Analysis

v Mew folder
Mame

demosearch
htrnl
ja
|| pfO0002.tree
] pfﬂﬂﬂﬂEfukree

A second Phylogenetic Tree viewer opens with tree data from the selected file.
Open Command

Use the Open command to read tree data from a Newick-formatted file and display that
data in the app.

1 From the File menu, click Open.

The Select Phylogenetic Tree File dialog box opens.

2 Select a directory, select a Newick-formatted file, and then click Open. The app uses
the file extension . tree for Newick-formatted files, but you can use any Newick-
formatted file with any extension.

The app replaces the current tree data with data from the selected file.
Import from Workspace Command

Use the Import from Workspace command to read tree data from a phytree object in
the MATLAB Workspace and display the data using the app.

1 From the File menu, select Import from Workspace.

The Get Phytree Object dialog box opens.

Using the Phylogenetic Tree App

I R
Bce. == X |
Select phytree object:
tr -
| Import | | Cancel |
L _

From the list, select a phytree object in the MATLAB Workspace.
3 Click the Import button.

The app replaces the current tree data with data from the selected object.
Open Original in New Viewer
There may be times when you make changes that you would like to undo. The
Phylogenetic Tree app does not have an undo command, but you can get back to the
original tree you started viewing with the Open Original in New Viewer command.
From the File menu, select Open Original in New Viewer.
A new Phylogenetic Tree viewer opens with the original tree.

Save As Command

After you create a phytree object or prune a tree from existing data, you can save the
resulting tree in a Newick-formatted file. The sequence data used to create the phytree
object is not saved with the tree.

1 From the File menu, select Save As.

The Save Phylogenetic tree as dialog box opens.

5-7

5 Phylogenetic Analysis

2 In the Filename box, enter the name of a file. The toolbox uses the file
extension . tree for Newick-formatted files, but you can use any file extension.

3 Click Save.

The app saves tree data without the deleted branches, and it saves changes to branch
and leaf names. Formatting changes such as branch rotations, collapsed branches,
and zoom settings are not saved in the file.

Export to New Viewer Command

Because some of the Phylogenetic Tree viewer commands cannot be undone (for example,
the Prune command), you might want to make a copy of your tree before trying a
command. At other times, you might want to compare two views of the same tree, and
copying a tree to a new tool window allows you to make changes to both tree views
independently .

1 Select File > Export to New Viewer, and then select either With Hidden Nodes or
Only Displayed.
A new Phylogenetic Tree viewer opens with a copy of the tree.

2 Use the new figure to continue your analysis.

Export to Workspace Command

The Phylogenetic Tree app can open Newick-formatted files with tree data. However, it
does not create a phytree object in the MATLAB Workspace. If you want to
programmatically explore phylogenetic trees, you need to use the Export to Workspace
command.

1 Select File > Export to Workspace, and then select either With Hidden Nodes or
Only Displayed.
The Export to Workspace dialog box opens.

2 In the Workspace variable name box, enter the name for your phylogenetic tree
data. For example, enter MyTree.

Using the Phylogenetic Tree App

ru Export tI. — | |_ﬂhr

Workspace variable name 7
MyTree

[ox_] [cancel]

L A

3 Click OK.

The app creates a phytree object in the MATLAB Workspace.
Print to Figure Command

After you have explored the relationships between branches and leaves in your tree, you
can copy the tree to a MATLAB Figure window. Using a Figure window lets you use all the
features for annotating, changing font characteristics, and getting your figure ready for
publication. Also, from the Figure window, you can save an image of the tree as it was
displayed in the Phylogenetic Tree app.

1 From the File menu, select Print to Figure, and then select either With Hidden
Nodes or Only Displayed.

The Print Phylogenetic Tree to Figure dialog box opens.

5-9

5 Phylogenetic Analysis

Print Phylogenetic Tree to Figure

2 Select one of the Rendering Types.

5-10

Using the Phylogenetic Tree App

Rendering Type Description
'square' (default) T]
L —e ——¢ Z]
E + E

5-11

5 Phylogenetic Analysis

5-12

Rendering Type

Description

'angular'’

DooDobdboodoobBOoOBdO0dd 0000

o

'radial'

Using the Phylogenetic Tree App

Rendering Type Description

'equalangle’
Tip This rendering type hides the significance of the
root node and emphasizes clusters, thereby making it
useful for visually assessing clusters and detecting
outliers.

'equaldaylight’

Tip This rendering type hides the significance of the
root node and emphasizes clusters, thereby making it
useful for visually assessing clusters and detecting

outliers.

5-13

5 Phylogenetic Analysis

3 Select the Display Labels you want on your figure. You can select from all to none of
the options.

* Branch Nodes — Display branch node names on the figure.

* Leaf Nodes — Display leaf node names on the figure.

* Terminal Nodes — Display terminal node names on the right border.
4 Click the Print button.

A new Figure window opens with the characteristics you selected.
Print Preview Command

When you print from the Phylogenetic Tree app or a MATLAB Figure window (with a
tree published from the viewer), you can specify setup options for printing a tree.

1 From the File menu, select Print Preview.

The Print Preview window opens, which you can use to select page formatting
options.

5-14

Using the Phylogenetic Tree App

m@&1

0

2

4

6

-_ Zooml Print H Refresh “ Help H Close

8

P
n Print Preview
StyleSheet default
Layout | Linesr’Textl Color | Advanced|

Placement

) Auto (Actual Size, Centered)

@ Use manual size and position

Left: 02565
Top: 2505
Width: 800t
Height: 6.001%
I Use defaults J I Fill page I

I Fix aspect ratio I I Center I
Paper
Format: | USLetter - |
Width: 8.501%
Height: 11.00 1%
Units: Orientation

@ Inches @ Portrait

) Centimeters _ Landscape

| Points) Rotated

(1= R R« I T S SURNY |\ R)

S o=

|

[+

lL

L

4

2 Select the page formatting options and values you want, and then click Print.

Print Command

Use the Print command to make a copy of your phylogenetic tree after you use the Print

Preview command to select formatting options.
1 From the File menu, select Print.

The Print dialog box opens.

2 From the Name list, select a printer, and then click OK.

Tools Menu

Use the Tools menu to:

» Explore branch paths

5-15

5 Phylogenetic Analysis

* Rotate branches
* Find, rename, hide, and prune branches and leaves.
The Tools menu and toolbar contain most of the commands specific to trees and

phylogenetic analysis. Use these commands and modes to edit and format your tree
interactively. The Tools menu commands are:

n Phylogenetic Tree 1

File | Toels | Window Help

e = Inspect

Collapse/Expand
Rotate Branch
Rename

Prune

Zoom In

Zoom Cut

Pan

Select r
Find Leaf/Branch...
Collapse Selected
Expand Selected
Expand All

Fit to Window
Reset View

Options 3

Inspect Mode

Viewing a phylogenetic tree in the Phylogenetic Tree app provides a rough idea of how
closely related two sequences are. However, to see exactly how closely related two
sequences are, measure the distance of the path between them. Use the Inspect
command to display and measure the path between two sequences.

5-16

Using the Phylogenetic Tree App

Select Tools > Inspect, or from the toolbar, click the Inspect Tool Mode icon ﬁl

The app is set to inspect mode.

Click a branch or leaf node (selected node), and then hover your cursor over another
branch or leaf node (current node).

The app highlights the path between the two nodes and displays the path length in
the pop-up window. The path length is the patristic distance calculated by the
segpdist function.

O FLELMd_FAZDd8- 20 1}
_:&:I CDY7_MOUSES2E6-TTT
FET L IRARIE A A TR
—g Path length; 055444
o Selected node: EMRT_HUMARNS39-551
—————————n Current node; CDAY_MOUSESS2E-FFT

Collapse and Expand Branch Mode

Some trees have thousands of leaf and branch nodes. Displaying all the nodes can create
an unreadable tree diagram. By collapsing some branches, you can better see the
relationships between the remaining nodes.

1

Select Tools > Collapse/Expand, or from the toolbar, click the Collapse/Expand
Brand Mode icon £|

The app is set to collapse/expand mode.
Point to a branch.

The paths, branch nodes, and leaf nodes below the selected branch appear in gray,
indicating you selected them to collapse (hide from view).

I_H I_‘

Branch 11 (3 samples) _% &
GLPT RATA41-409 :

GIPR HURAMNA 34-399

GLR HUMAN/138-407

I .
Click the branch node.

gooooooo

5-17

5 Phylogenetic Analysis

The app hides the display of paths, branch nodes, and leaf nodes below the selected
branch. However, it does not remove the data.

gooo o

4 To expand a collapsed branch, click it or select Tools > Reset View.

Tip After collapsing nodes, you can redraw the tree by selecting Tools > Fit to Window.

Rotate Branch Mode

A phylogenetic tree is initially created by pairing the two most similar sequences and then
adding the remaining sequences in a decreasing order of similarity. You can rotate
branches to emphasize the direction of evolution.

1 Select Tools > Rotate Branch, or from the toolbar, click the Rotate Branch Mode

icon @I

The app is set to rotate branch mode.
2 Point to a branch node.

N
Branch 11 (3 samples) % &
GLP1 RATA141-409
GIPR HUMANA34-393
GLR HUKARNSA 35-407

goopooon

3 Click the branch node.

I @
Branch 11 (3 samples) _tk
GIPR HUMAMNA34-329
GLR HUMANM3E8-407 ——®

GLP1 RATA141-409

|

| —- [

oooooooon

5-18

Using the Phylogenetic Tree App

4

The branch and leaf nodes below the selected branch node rotate 180 degrees
around the branch node.

To undo the rotation, simply click the branch node again.

Rename Leaf or Branch Mode

The Phylogenetic Tree app takes the node names from a phytree object and creates
numbered branch names starting with Branch 1. You can edit any of the leaf or branch
names.

1

Select Tools > Rename, or from the toolbar, click the Rename Leaf/Branch Mode
T

icon £|

The app is set to rename mode.

Click a branch or leaf node.

_|
T
— %

A text box opens with the current name of the node.
In the text box, edit or enter a new name.

L | I I I By NP P R I L | N .

Branch 14 SRR HURMARA 38-391
u quUALR BRAT145-435

O

O

D j

CALR PIG/M146-415
CRF1 RATA 16-370
CRFZ XENLAM15-368

T O = I L o I i i
—] CALR SRR HURAR/138-391

& u - uLALR RAT/145-435
o - CALR PIG/146-415
o - CRF1 RAT/116-370

0 1 CREZXENLA/TT5-368

To accept your changes and close the text box, click outside of the text box. To save
your changes, select File > Save As.

Prune (Delete) Leaf or Branch Mode

Your tree can contain leaves that are far outside the phylogeny, or it can have duplicate
leaves that you want to remove.

1

Select Tools > Prune, or from the toolbar, click the Prune (delete) Leaf/Branch
Mode icon ﬁl

5-19

5 Phylogenetic Analysis

5-20

The app is set to prune mode.
2 Point to a branch or leaf node.

MTH DROMEZ11-4580

looooooo

*

For a leaf node, the branch line connected to the leaf appears in gray. For a branch
node, the branch lines below the node appear in gray.

Note If you delete nodes (branches or leaves), you cannot undo the changes. The
Phylogenetic Tree app does not have an Undo command.

3 Click the branch or leaf node.

The tool removes the branch from the figure and rearranges the other nodes to
balance the tree structure. It does not recalculate the phylogeny.

Tip After pruning nodes, you can redraw the tree by selecting Tools > Fit to Window.

Zoom In, Zoom Out, and Pan Commands

The Zoom and Pan commands are the standard controls for resizing and moving the
screen in any MATLAB Figure window.

’ &
Select Tools > Zoom In, or from the toolbar, click the Zoom In icon .

The app activates zoom in mode and changes the cursor to a magnifying glass.

Using the Phylogenetic Tree App

Place the cursor over the section of the tree diagram you want to enlarge and then
click.

The tree diagram doubles its size.

o -

@\Q::

From the toolbar click the Pan icon ﬂl

Move the cursor over the tree diagram, left-click, and drag the diagram to the
location you want to view.

Tip After zooming and panning, you can reset the tree to its original view, by selecting
Tools > Reset View.

Select Submenu

Select a single branch or leaf node by clicking it. Select multiple branch or leaf nodes by
Shift-clicking the nodes, or click-dragging to draw a box around nodes.

Use the Select submenu to select specific branch and leaf nodes based on different
criteria.

Select By Distance — Displays a slider bar at the top of the window, which you slide
to specify a distance threshold. Nodes whose distance from the selected node are
below this threshold appear in red. Nodes whose distance from the selected node are
above this threshold appear in blue.

Select Common Ancestor — For all selected nodes, highlights the closest common
ancestor branch node in red.

Select Leaves — If one or more nodes are selected, highlights the nodes that are leaf
nodes in red. If no nodes are selected, highlights all leaf nodes in red

5-21

5 Phylogenetic Analysis

* Propagate Selection — For all selected nodes, highlights the descendant nodes in
red.

* Swap Selection — Clears all selected nodes and selects all deselected nodes.

After selecting nodes using one of the previous commands, hide and show the nodes using
the following commands:

* Collapse Selected
* Expand Selected
* Expand All

Clear all selected nodes by clicking anywhere else in the Phylogenetic Tree app.
Find Leaf or Branch Command

Phylogenetic trees can have thousands of leaves and branches, and finding a specific
node can be difficult. Use the Find Leaf/Branch command to locate a node using its
name or part of its name.

1 Select Tools > Find Leaf/Branch.

The Find Leaf/Branch dialog box opens.

Find Leaf/Branch _)i[

Hegular Expression to match ?

] 4 Cancel | H

2 In the Regular Expression to match box, enter a name or partial name of a branch
or leaf node.

3 Click OK.
The branch or leaf nodes that match the expression appear in red.

After selecting nodes using the Find Leaf/Branch command, you can hide and show the
nodes using the following commands:

5-22

Using the Phylogenetic Tree App

* Collapse Selected
* Expand Selected
* Expand All

Collapse Selected, Expand Selected, and Expand All Commands

When you select nodes, either manually or using the previous commands, you can then
collapse them by selecting Tools > Collapse Selected.

The data for branches and leaves that you hide using the Collapse/Expand or Collapse
Selected command are not removed from the tree. You can display selected or all hidden
data using the Expand Selected or Expand All command.

Fit to Window Command

After you hide nodes with the collapse commands, or delete nodes with the Prune
command, there can be extra space in the tree diagram. Use the Fit to Window
command to redraw the tree diagram to fill the entire Figure window.

Select Tools > Fit to Window.

Reset View Command

Use the Reset View command to remove formatting changes such as collapsed branches
and zooms.

Select Tools > Reset View.
Options Submenu

Use the Options command to select the behavior for the zoom and pan modes.

* Unconstrained Zoom — Allow zooming in both horizontal and vertical directions.
* Horizontal Zoom — Restrict zooming to the horizontal direction.

* Vertical Zoom (default) — Restrict zooming to the vertical direction.

* Unconstrained Pan — Allow panning in both horizontal and vertical directions.

* Horizontal Pan — Restrict panning to the horizontal direction.

* Vertical Pan (default) — Restrict panning to the vertical direction.

5-23

5 Phylogenetic Analysis

5-24

Window Menu
This section illustrates how to switch to any open window.

The Window menu is standard on MATLAB interfaces and Figure windows. Use this
menu to select any opened window.

Help Menu

This section illustrates how to select quick links to the Bioinformatics Toolbox
documentation for phylogenetic analysis functions, tutorials, and the Phylogenetic Tree
app reference.

Use the Help menu to select quick links to the Bioinformatics Toolbox documentation for
phylogenetic analysis functions, tutorials, and the phytreeviewer reference.

